Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2025 | Story Reuben Maeko | Photo Supplied
Dr Mutshidzi Mulondo
Dr Mutshidzi Mulondo, UFS academic in the Division of Public Health within the Faculty of Health Sciences at the UFS.

Dr Mutshidzi Mulondo, an academic in the Division of Public Health within the Faculty of Health Sciences at the University of the Free State (UFS), will make history when she becomes the first academic from the institution to be inaugurated into the Global Young Academy (GYA).

Dr Mulondo is one of two South Africans that are part of the 2025 cohort of incoming members who will be inaugurated to the sought-after prestigious Academy in Hyderabad, India. The other South African is Dr Mbuzeleni Hlongwa, a Senior Research Specialist at the Human Sciences Research Council.

The Global Young Academy is a network institution of the United Nations Scientific Advisory Board which allows young scientists from around the world to collaborate on research, set the global agenda, and contribute to global policies. The GYA develops, connects and mobilises young talent from six continents, and empowers young researchers to lead international, interdisciplinary and intergenerational dialogue and contribute to societal challenges. The GYA aims to elevate the voice of young scientists in evidence-informed and inclusive global, regional and national decision making.

The membership is comprised of passionate young scientists, typically who obtained their PhD degrees three to 10 years earlier, are between 30 to 40 years of age, and in the early stages of their independent academic careers. Members are selected for their scientific excellence and commitment to engage with society, and serve five-year terms.

 

Global Young Academy

“I feel honoured to be selected. The selection further cements the ingenuity of young African scientists and our ability to shape the global agenda. It allows us to envision a future together which leans towards empathy, kindness and unity,” said Dr Mulondo.

The Academy hopes to bridge the gap between established and new academics as well the gap between academics from the Global North and Global South. Further positioning academics from the south for interdisciplinary collaboration and publication in high impact journals to address complex and emerging challenges such as public health issues. The Academy selects young academics who display contribution to research, dedication to serving society and the ability to make an impact on the Academy’s community.

 

Aspirations in the academy

The recognition is testament that Africa is still producing globally competitive academics. This achievement is even better as it comes during the G20 presidency when Africa is showing what the developing world can produce. Coincidentally, Dr Mulondo, was one of the invited speakers at the G20 Research & Innovation Working Group, joining other selected young academics.

According to Dr Mulondo, who won the Zenith Global Health Award under the category ‘Mental Health and Well-being’ last year and was first runner-up in the category Emerging Leader at the South African Health Excellence Award. Academics from Africa have a responsibility to contribute to the development of the continent through evidence-based advice and solutions to policymakers. This membership allows young academics to stay in touch with global scientific trends and shifts in order to be better informed about resolving some of humanity’s most pressing crises.

She hopes to continue to advance public health strategies that prioritise mental health and health equity. With geopolitical complexities, climate changes and technological advancements shaping our future, the Academy allows for voices from the Global South to contribute to global policies and influence global policy decisions. “As a mentor and supervisor of master’s and PhD students in Public Health, I hope to contribute to ushering in a new generation of well-rounded public health researchers who are societally engaged.”

Prof Anthea Rhoda, UFS Deputy Vice-Chancellor: Academic, congratulated Dr Mulondo, saying the UFS is extremely proud of her. “Being selected as one of two South African scholars to the Global Young Academy demonstrates her dedication as a public health scholar passionate about making a difference in the health and well-being of society. Well done, on this great achievement.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept