Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2025 | Story Reuben Maeko | Photo Supplied
Dr Mutshidzi Mulondo
Dr Mutshidzi Mulondo, UFS academic in the Division of Public Health within the Faculty of Health Sciences at the UFS.

Dr Mutshidzi Mulondo, an academic in the Division of Public Health within the Faculty of Health Sciences at the University of the Free State (UFS), will make history when she becomes the first academic from the institution to be inaugurated into the Global Young Academy (GYA).

Dr Mulondo is one of two South Africans that are part of the 2025 cohort of incoming members who will be inaugurated to the sought-after prestigious Academy in Hyderabad, India. The other South African is Dr Mbuzeleni Hlongwa, a Senior Research Specialist at the Human Sciences Research Council.

The Global Young Academy is a network institution of the United Nations Scientific Advisory Board which allows young scientists from around the world to collaborate on research, set the global agenda, and contribute to global policies. The GYA develops, connects and mobilises young talent from six continents, and empowers young researchers to lead international, interdisciplinary and intergenerational dialogue and contribute to societal challenges. The GYA aims to elevate the voice of young scientists in evidence-informed and inclusive global, regional and national decision making.

The membership is comprised of passionate young scientists, typically who obtained their PhD degrees three to 10 years earlier, are between 30 to 40 years of age, and in the early stages of their independent academic careers. Members are selected for their scientific excellence and commitment to engage with society, and serve five-year terms.

 

Global Young Academy

“I feel honoured to be selected. The selection further cements the ingenuity of young African scientists and our ability to shape the global agenda. It allows us to envision a future together which leans towards empathy, kindness and unity,” said Dr Mulondo.

The Academy hopes to bridge the gap between established and new academics as well the gap between academics from the Global North and Global South. Further positioning academics from the south for interdisciplinary collaboration and publication in high impact journals to address complex and emerging challenges such as public health issues. The Academy selects young academics who display contribution to research, dedication to serving society and the ability to make an impact on the Academy’s community.

 

Aspirations in the academy

The recognition is testament that Africa is still producing globally competitive academics. This achievement is even better as it comes during the G20 presidency when Africa is showing what the developing world can produce. Coincidentally, Dr Mulondo, was one of the invited speakers at the G20 Research & Innovation Working Group, joining other selected young academics.

According to Dr Mulondo, who won the Zenith Global Health Award under the category ‘Mental Health and Well-being’ last year and was first runner-up in the category Emerging Leader at the South African Health Excellence Award. Academics from Africa have a responsibility to contribute to the development of the continent through evidence-based advice and solutions to policymakers. This membership allows young academics to stay in touch with global scientific trends and shifts in order to be better informed about resolving some of humanity’s most pressing crises.

She hopes to continue to advance public health strategies that prioritise mental health and health equity. With geopolitical complexities, climate changes and technological advancements shaping our future, the Academy allows for voices from the Global South to contribute to global policies and influence global policy decisions. “As a mentor and supervisor of master’s and PhD students in Public Health, I hope to contribute to ushering in a new generation of well-rounded public health researchers who are societally engaged.”

Prof Anthea Rhoda, UFS Deputy Vice-Chancellor: Academic, congratulated Dr Mulondo, saying the UFS is extremely proud of her. “Being selected as one of two South African scholars to the Global Young Academy demonstrates her dedication as a public health scholar passionate about making a difference in the health and well-being of society. Well done, on this great achievement.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept