Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 April 2025 | Story Leonie Bolleurs | Photo Supplied
Marinda Avenant
Dr Marinda Avenant (far right) at the first COPAFEU workshop in Helsinki with Dr Ignatius Ticha and Prof Beatrice Opeolu from the Cape Peninsula University of Technology. She joined the initiative two years ago as part of a consortium applying for ERASMUS+ funding for the e-service learning project.

Dr Marinda Avenant, Senior Lecturer in the Centre for Environmental Management at the University of the Free State (UFS), is working with her master’s students on a project to develop strategies to reduce the volume of solid waste reaching the Mangaung Metropolitan Municipality’s already overburdened landfill sites. 

All this came about through ‘Co-Producing Knowledge on Sustainable Growth through Service-Learning Pedagogy between African and European Higher Education Institutions’ (COPAFEU) – a project focused on ensuring that graduates have the skills they need for employment and entrepreneurship, while also contributing to sustainable local development. To do this, COPAFEU is developing a new approach where students follow the enhanced service-learning (e-service learning) route, working on real-world challenges and producing free, innovative educational resources on sustainable growth.

Dr Avenant became involved in the COPAFEU initiative two years ago when she was invited to be part of a consortium of universities applying for funding for the e-service-learning project from the ERASMUS+ funding programme, an EU funding programme for projects supporting education, training, youth, and sport.

She is leading the COPAFEU project on behalf of the Centre for Environmental Management (CEM) and the UFS.


A first time

Together with Prof Olusola (Shola) Oluwayemisi Ololade, Associate Professor and Director of CEM, and other academics, Dr Avenant is developing the e-service learning component to be incorporated into the structured Master of Science programmes specialising in Environmental Management and Integrated Water Management, respectively. 

“Our postgraduate programmes in Environmental Management and Integrated Water Management are following a blended delivery approach catering to working professionals, with short contact sessions on campus before they return to their jobs.” Dr Avenant says that their curricula have never included a service-learning component due to the limited time students spend on campus as well as their work commitments.

Providing more clarity on the e-service learning concept, she explains that an entrepreneurial component is integrated into the conventional service-learning pedagogy. “As part of the project, students will collaborate closely with lecturers and community partners to co-produce knowledge and develop digital open educational resources.”
 
According to Dr Avenant, the master’s students started with the first phase of the project in January this year, working with the community partner – the Solid Waste Management section at the Mangaung Metropolitan Municipality (MMM). In this phase, they visited a waste recycling pilot project, engaging with various stakeholders, including MMM environmental officers, residents from Mandela View, and waste pickers from the South African Waste Pickers Association, to reduce the volume of solid waste reaching landfill sites. 

Following the visit, students are conducting situation analyses of different aspects of the pilot project and are developing solutions to optimise the recycling initiative. They will present their findings and recommendations to stakeholders in an online webinar in June 2025.

In the second phase of this project, students will use the experiences and knowledge acquired in the first phase to create short videos exploring how civil society can contribute to reducing solid waste. Dr Avenant states that these videos will form part of open-access short-learning courses developed by the students themselves. “The courses will be hosted on a web-based platform, contributing to the creation of several massive open online courses (MOOCs) in the project’s final phase,” she adds.

For Dr Avenant, it is important to make an impact at the local level. “I believe that this is where environmental management truly ‘happens’ and where our students can have the greatest impact. It is also the level where environmental interventions are most urgently needed in South Africa. Real sustainable solutions and growth must happen within local communities,” she comments. 

“By focusing on local actions, our students can help to bring about meaningful and practical change,” she says.


Aligning with Vision 130

Although the Centre for Environmental Management’s involvement in the COPAFEU project has a local impact, it also aligns with Vision 130’s goal of expanding the university’s influence regionally and internationally. By collaborating with a consortium of two European and eight African universities, the project strengthens professional networks and increases the UFS’ global presence.

Just as these partnerships create opportunities for knowledge exchange and capacity building, they also provide a valuable platform for students to gain real-world experience and broaden their perspectives. Dr Avenant’s dream for her students is to see them grow into well-rounded environmental and water managers who can think critically, work across disciplines, and address complex real-world problems with innovative solutions. She hopes that this service-learning component will not only shift their perspectives, but also help them develop a diverse skill set, create a sense of social responsibility, and apply their knowledge in meaningful ways – whether by solving immediate environmental challenges or contributing to an open-access short learning course.

Beyond technical expertise, she believes that perseverance, accountability, resilience, teamwork, and ethical decision-making are just as important, and she is confident that this experience will help to establish these qualities in her students.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept