Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 April 2025 | Story Leonie Bolleurs | Photo Supplied
Marinda Avenant
Dr Marinda Avenant (far right) at the first COPAFEU workshop in Helsinki with Dr Ignatius Ticha and Prof Beatrice Opeolu from the Cape Peninsula University of Technology. She joined the initiative two years ago as part of a consortium applying for ERASMUS+ funding for the e-service learning project.

Dr Marinda Avenant, Senior Lecturer in the Centre for Environmental Management at the University of the Free State (UFS), is working with her master’s students on a project to develop strategies to reduce the volume of solid waste reaching the Mangaung Metropolitan Municipality’s already overburdened landfill sites. 

All this came about through ‘Co-Producing Knowledge on Sustainable Growth through Service-Learning Pedagogy between African and European Higher Education Institutions’ (COPAFEU) – a project focused on ensuring that graduates have the skills they need for employment and entrepreneurship, while also contributing to sustainable local development. To do this, COPAFEU is developing a new approach where students follow the enhanced service-learning (e-service learning) route, working on real-world challenges and producing free, innovative educational resources on sustainable growth.

Dr Avenant became involved in the COPAFEU initiative two years ago when she was invited to be part of a consortium of universities applying for funding for the e-service-learning project from the ERASMUS+ funding programme, an EU funding programme for projects supporting education, training, youth, and sport.

She is leading the COPAFEU project on behalf of the Centre for Environmental Management (CEM) and the UFS.


A first time

Together with Prof Olusola (Shola) Oluwayemisi Ololade, Associate Professor and Director of CEM, and other academics, Dr Avenant is developing the e-service learning component to be incorporated into the structured Master of Science programmes specialising in Environmental Management and Integrated Water Management, respectively. 

“Our postgraduate programmes in Environmental Management and Integrated Water Management are following a blended delivery approach catering to working professionals, with short contact sessions on campus before they return to their jobs.” Dr Avenant says that their curricula have never included a service-learning component due to the limited time students spend on campus as well as their work commitments.

Providing more clarity on the e-service learning concept, she explains that an entrepreneurial component is integrated into the conventional service-learning pedagogy. “As part of the project, students will collaborate closely with lecturers and community partners to co-produce knowledge and develop digital open educational resources.”
 
According to Dr Avenant, the master’s students started with the first phase of the project in January this year, working with the community partner – the Solid Waste Management section at the Mangaung Metropolitan Municipality (MMM). In this phase, they visited a waste recycling pilot project, engaging with various stakeholders, including MMM environmental officers, residents from Mandela View, and waste pickers from the South African Waste Pickers Association, to reduce the volume of solid waste reaching landfill sites. 

Following the visit, students are conducting situation analyses of different aspects of the pilot project and are developing solutions to optimise the recycling initiative. They will present their findings and recommendations to stakeholders in an online webinar in June 2025.

In the second phase of this project, students will use the experiences and knowledge acquired in the first phase to create short videos exploring how civil society can contribute to reducing solid waste. Dr Avenant states that these videos will form part of open-access short-learning courses developed by the students themselves. “The courses will be hosted on a web-based platform, contributing to the creation of several massive open online courses (MOOCs) in the project’s final phase,” she adds.

For Dr Avenant, it is important to make an impact at the local level. “I believe that this is where environmental management truly ‘happens’ and where our students can have the greatest impact. It is also the level where environmental interventions are most urgently needed in South Africa. Real sustainable solutions and growth must happen within local communities,” she comments. 

“By focusing on local actions, our students can help to bring about meaningful and practical change,” she says.


Aligning with Vision 130

Although the Centre for Environmental Management’s involvement in the COPAFEU project has a local impact, it also aligns with Vision 130’s goal of expanding the university’s influence regionally and internationally. By collaborating with a consortium of two European and eight African universities, the project strengthens professional networks and increases the UFS’ global presence.

Just as these partnerships create opportunities for knowledge exchange and capacity building, they also provide a valuable platform for students to gain real-world experience and broaden their perspectives. Dr Avenant’s dream for her students is to see them grow into well-rounded environmental and water managers who can think critically, work across disciplines, and address complex real-world problems with innovative solutions. She hopes that this service-learning component will not only shift their perspectives, but also help them develop a diverse skill set, create a sense of social responsibility, and apply their knowledge in meaningful ways – whether by solving immediate environmental challenges or contributing to an open-access short learning course.

Beyond technical expertise, she believes that perseverance, accountability, resilience, teamwork, and ethical decision-making are just as important, and she is confident that this experience will help to establish these qualities in her students.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept