Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 April 2025 | Story Leonie Bolleurs | Photo Supplied
Marinda Avenant
Dr Marinda Avenant (far right) at the first COPAFEU workshop in Helsinki with Dr Ignatius Ticha and Prof Beatrice Opeolu from the Cape Peninsula University of Technology. She joined the initiative two years ago as part of a consortium applying for ERASMUS+ funding for the e-service learning project.

Dr Marinda Avenant, Senior Lecturer in the Centre for Environmental Management at the University of the Free State (UFS), is working with her master’s students on a project to develop strategies to reduce the volume of solid waste reaching the Mangaung Metropolitan Municipality’s already overburdened landfill sites. 

All this came about through ‘Co-Producing Knowledge on Sustainable Growth through Service-Learning Pedagogy between African and European Higher Education Institutions’ (COPAFEU) – a project focused on ensuring that graduates have the skills they need for employment and entrepreneurship, while also contributing to sustainable local development. To do this, COPAFEU is developing a new approach where students follow the enhanced service-learning (e-service learning) route, working on real-world challenges and producing free, innovative educational resources on sustainable growth.

Dr Avenant became involved in the COPAFEU initiative two years ago when she was invited to be part of a consortium of universities applying for funding for the e-service-learning project from the ERASMUS+ funding programme, an EU funding programme for projects supporting education, training, youth, and sport.

She is leading the COPAFEU project on behalf of the Centre for Environmental Management (CEM) and the UFS.


A first time

Together with Prof Olusola (Shola) Oluwayemisi Ololade, Associate Professor and Director of CEM, and other academics, Dr Avenant is developing the e-service learning component to be incorporated into the structured Master of Science programmes specialising in Environmental Management and Integrated Water Management, respectively. 

“Our postgraduate programmes in Environmental Management and Integrated Water Management are following a blended delivery approach catering to working professionals, with short contact sessions on campus before they return to their jobs.” Dr Avenant says that their curricula have never included a service-learning component due to the limited time students spend on campus as well as their work commitments.

Providing more clarity on the e-service learning concept, she explains that an entrepreneurial component is integrated into the conventional service-learning pedagogy. “As part of the project, students will collaborate closely with lecturers and community partners to co-produce knowledge and develop digital open educational resources.”
 
According to Dr Avenant, the master’s students started with the first phase of the project in January this year, working with the community partner – the Solid Waste Management section at the Mangaung Metropolitan Municipality (MMM). In this phase, they visited a waste recycling pilot project, engaging with various stakeholders, including MMM environmental officers, residents from Mandela View, and waste pickers from the South African Waste Pickers Association, to reduce the volume of solid waste reaching landfill sites. 

Following the visit, students are conducting situation analyses of different aspects of the pilot project and are developing solutions to optimise the recycling initiative. They will present their findings and recommendations to stakeholders in an online webinar in June 2025.

In the second phase of this project, students will use the experiences and knowledge acquired in the first phase to create short videos exploring how civil society can contribute to reducing solid waste. Dr Avenant states that these videos will form part of open-access short-learning courses developed by the students themselves. “The courses will be hosted on a web-based platform, contributing to the creation of several massive open online courses (MOOCs) in the project’s final phase,” she adds.

For Dr Avenant, it is important to make an impact at the local level. “I believe that this is where environmental management truly ‘happens’ and where our students can have the greatest impact. It is also the level where environmental interventions are most urgently needed in South Africa. Real sustainable solutions and growth must happen within local communities,” she comments. 

“By focusing on local actions, our students can help to bring about meaningful and practical change,” she says.


Aligning with Vision 130

Although the Centre for Environmental Management’s involvement in the COPAFEU project has a local impact, it also aligns with Vision 130’s goal of expanding the university’s influence regionally and internationally. By collaborating with a consortium of two European and eight African universities, the project strengthens professional networks and increases the UFS’ global presence.

Just as these partnerships create opportunities for knowledge exchange and capacity building, they also provide a valuable platform for students to gain real-world experience and broaden their perspectives. Dr Avenant’s dream for her students is to see them grow into well-rounded environmental and water managers who can think critically, work across disciplines, and address complex real-world problems with innovative solutions. She hopes that this service-learning component will not only shift their perspectives, but also help them develop a diverse skill set, create a sense of social responsibility, and apply their knowledge in meaningful ways – whether by solving immediate environmental challenges or contributing to an open-access short learning course.

Beyond technical expertise, she believes that perseverance, accountability, resilience, teamwork, and ethical decision-making are just as important, and she is confident that this experience will help to establish these qualities in her students.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept