Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 April 2025 | Story Leonie Bolleurs | Photo Supplied
Marinda Avenant
Dr Marinda Avenant (far right) at the first COPAFEU workshop in Helsinki with Dr Ignatius Ticha and Prof Beatrice Opeolu from the Cape Peninsula University of Technology. She joined the initiative two years ago as part of a consortium applying for ERASMUS+ funding for the e-service learning project.

Dr Marinda Avenant, Senior Lecturer in the Centre for Environmental Management at the University of the Free State (UFS), is working with her master’s students on a project to develop strategies to reduce the volume of solid waste reaching the Mangaung Metropolitan Municipality’s already overburdened landfill sites. 

All this came about through ‘Co-Producing Knowledge on Sustainable Growth through Service-Learning Pedagogy between African and European Higher Education Institutions’ (COPAFEU) – a project focused on ensuring that graduates have the skills they need for employment and entrepreneurship, while also contributing to sustainable local development. To do this, COPAFEU is developing a new approach where students follow the enhanced service-learning (e-service learning) route, working on real-world challenges and producing free, innovative educational resources on sustainable growth.

Dr Avenant became involved in the COPAFEU initiative two years ago when she was invited to be part of a consortium of universities applying for funding for the e-service-learning project from the ERASMUS+ funding programme, an EU funding programme for projects supporting education, training, youth, and sport.

She is leading the COPAFEU project on behalf of the Centre for Environmental Management (CEM) and the UFS.


A first time

Together with Prof Olusola (Shola) Oluwayemisi Ololade, Associate Professor and Director of CEM, and other academics, Dr Avenant is developing the e-service learning component to be incorporated into the structured Master of Science programmes specialising in Environmental Management and Integrated Water Management, respectively. 

“Our postgraduate programmes in Environmental Management and Integrated Water Management are following a blended delivery approach catering to working professionals, with short contact sessions on campus before they return to their jobs.” Dr Avenant says that their curricula have never included a service-learning component due to the limited time students spend on campus as well as their work commitments.

Providing more clarity on the e-service learning concept, she explains that an entrepreneurial component is integrated into the conventional service-learning pedagogy. “As part of the project, students will collaborate closely with lecturers and community partners to co-produce knowledge and develop digital open educational resources.”
 
According to Dr Avenant, the master’s students started with the first phase of the project in January this year, working with the community partner – the Solid Waste Management section at the Mangaung Metropolitan Municipality (MMM). In this phase, they visited a waste recycling pilot project, engaging with various stakeholders, including MMM environmental officers, residents from Mandela View, and waste pickers from the South African Waste Pickers Association, to reduce the volume of solid waste reaching landfill sites. 

Following the visit, students are conducting situation analyses of different aspects of the pilot project and are developing solutions to optimise the recycling initiative. They will present their findings and recommendations to stakeholders in an online webinar in June 2025.

In the second phase of this project, students will use the experiences and knowledge acquired in the first phase to create short videos exploring how civil society can contribute to reducing solid waste. Dr Avenant states that these videos will form part of open-access short-learning courses developed by the students themselves. “The courses will be hosted on a web-based platform, contributing to the creation of several massive open online courses (MOOCs) in the project’s final phase,” she adds.

For Dr Avenant, it is important to make an impact at the local level. “I believe that this is where environmental management truly ‘happens’ and where our students can have the greatest impact. It is also the level where environmental interventions are most urgently needed in South Africa. Real sustainable solutions and growth must happen within local communities,” she comments. 

“By focusing on local actions, our students can help to bring about meaningful and practical change,” she says.


Aligning with Vision 130

Although the Centre for Environmental Management’s involvement in the COPAFEU project has a local impact, it also aligns with Vision 130’s goal of expanding the university’s influence regionally and internationally. By collaborating with a consortium of two European and eight African universities, the project strengthens professional networks and increases the UFS’ global presence.

Just as these partnerships create opportunities for knowledge exchange and capacity building, they also provide a valuable platform for students to gain real-world experience and broaden their perspectives. Dr Avenant’s dream for her students is to see them grow into well-rounded environmental and water managers who can think critically, work across disciplines, and address complex real-world problems with innovative solutions. She hopes that this service-learning component will not only shift their perspectives, but also help them develop a diverse skill set, create a sense of social responsibility, and apply their knowledge in meaningful ways – whether by solving immediate environmental challenges or contributing to an open-access short learning course.

Beyond technical expertise, she believes that perseverance, accountability, resilience, teamwork, and ethical decision-making are just as important, and she is confident that this experience will help to establish these qualities in her students.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept