Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Precious Shamase | Photo Kaleidoscope Studios
Sellwane Moloi
Sellwane Jeanette Moloi celebrates graduating with a PhD in plant stress biology, contributing vital research toward global food security through drought-tolerant wheat studies.

Embarking on a PhD is a transformative journey, one filled with intellectual challenges, personal growth, and the potential to contribute meaningfully to one's field. For Sellwane Jeanette Moloi – who has graduated with her PhD on Friday 4 April during the afternoon session – the path was illuminated by a deep fascination with plants and a determination to address the critical issue of global food security.

 

A spark of curiosity

"The initial spark came from a deep curiosity about plants," Moloi shared. "I was intrigued by how plants function and the key mechanisms that help them survive when exposed to various environmental stress factors. Learning different techniques used to study and analyse plant responses to environmental factors made me even more intrigued." This curiosity fuelled a rigorous exploration into plant stress biology, focusing on how wheat thrives under drought conditions.

 

Navigating the challenges

Reflecting on the experience, however, the PhD journey was not without its hurdles. "One of the most challenging aspects was staying motivated and managing pressure," Moloi confessed. "Setbacks and slow progress can also be overwhelming." Overcoming these obstacles required a strategic approach: "I had to break down larger tasks into manageable tasks and also seek support from my supervisors."

Doubts inevitably arose, especially when experiments did not go as planned. "There were moments when I asked myself what I had actually gotten myself into," she admitted. However, the unwavering support of supervisors, colleagues, friends, and family provided the necessary reassurance. "They always assured me things would work out; I needed to hang in there."

 

Key discoveries and achievements

Amid the challenges, significant discoveries were made. Notably, Moloi found that a drought-tolerant wheat variety suppressed photosynthesis as a potential strategy to avert oxidative stress damage, maintaining cell membrane integrity during stressful conditions. This unexpected turn stressed the complexity of plant survival mechanisms.

Moloi’s dedication and hard work culminated in significant achievements, including winning the best PhD poster in plant physiology at the 46th South Africa Association of Botanists Conference in 2020, 3rd Prize at the University of Johannesburg Postgraduate Symposium in 2023 and publishing two research articles in high-impact journals. These accomplishments are a testament to her research prowess and contribution to the field.

 

Developing essential skills

Beyond the research itself, the PhD journey fostered critical skills vital for future success. ‘Critical thinking, logical reasoning, and problem-solving’ were highlighted as key takeaways. "As a PhD student, your mind is constantly engaged in critically analysing results and providing logical reasoning. I believe these skills are valuable in tackling certain situations and providing solutions to problems."

 

Balancing life and research

Balancing research with other aspects of life proved challenging. "That was challenging, but I created a schedule that worked for me," the graduand explained. "This included dedicating certain days (weekends or holidays) or hours to specific tasks, such as lab work or writing. One thing I would advise a PhD student is that they should make time to rest to avoid burnout."


Contribution to food security

Moloi's research holds significant implications for global food security, a pressing issue in the face of climate change and a growing population. "I hope my research will provide insight into how wheat as a cereal crop thrives under drought stress conditions, and the information can be used by plant breeding initiatives in developing more drought-tolerant crops," she stated. "The opportunity to contribute to the field of plant stress biology – my research focuses on understanding plant response mechanisms under drought, and acquiring such information can address issues related to global food security."


Advice for future PhD candidates

For students embarking on their PhD journey, Moloi offered valuable advice: "This degree requires one to be highly motivated and ask for help whenever there are setbacks. There will always be setbacks in research; you need to go back to the drawing board and look for solutions." She also emphasised the importance of seeking support for mental and emotional well-being. "It is okay to feel overwhelmed; the work can be too much at times. Students need to ask for help. We have professionals on campus who can assist with mental or emotional issues."

Furthermore, Moloi shared personal lessons: "Time management and prioritising important tasks. I also learned that it is important to allow yourself to rest. This degree can affect your mental or emotional health." And a candid reflection: "I did not have much of a social life, and I spent most of my time in the lab."

 

Looking ahead

With a PhD in hand, Moloi aspires to become an expert in her field, collaborating with other researchers and mentoring future students. Her journey exemplifies the dedication, resilience, and intellectual curiosity required to excel in academia and contribute to addressing pressing global challenges.

The university provided essential support throughout her studies, ensuring access to facilities even during the COVID-19 pandemic. "I always had access to the facilities on campus to do my research, even during the COVID-19 pandemic."

Celebrating milestones along the way was crucial, with fellow postgraduates sharing in each other's achievements. "My fellow postgraduates and I often went out for lunch to celebrate everyone's achievements." And the support system was extensive: "Everyone – family, supervisors, friends, and colleagues.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept