Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2025 | Story Precious Shamase | Photo Supplied
Sifiso Banda
Sifiso Banda balances library duties and academic goals, showcasing innovation and resilience at the UFS Qwaqwa Campus.

In the heart of the University of the Free State Qwaqwa Campus, Sifiso Banda's story is one of ambition, and the seamless fusion of seemingly disparate worlds. Balancing his role as Senior Assistant Officer: Circulations and TK Mopeli Makerspace in the library with the rigorous demands of a BSc Honours Degree in Computer Science, Banda has not only excelled but also inspired.

 

Overcoming challenges fuelled by dreams

"Computer Science is my primary passion," Banda explains, his voice resonating with determination. "Being in academia allows me to interact with ever-evolving technologies. I love problem-solving and creating new ideas to help my community. “However, the path was far from easy. Juggling a demanding job with intense academic pressure led to sleepless nights and near-burnout. "It required immense professionalism in time planning and management," he confesses. "I almost gave up, but the unwavering support of my colleagues and supervisors kept me going."

Banda's journey is a testament to the power of perseverance, fuelled by a deep sense of responsibility and gratitude. "I had to remind myself daily who I was doing this for," he says, his voice filled with emotion. "My late mother used her last savings to register me for university, giving me an opportunity she never had. That memory pushed me through the pain."

 

From theory to practice: Innovating library technology

His unique position within the library has provided an unexpected synergy with his Computer Science studies. "I saw a gap to bridge theory with practical application," Banda explains. "I want to use my tech skills to innovate and make education engaging, developing systems and apps that simplify student life."

He discovered that library science extends far beyond traditional book management. "It's not just borrowing and cataloguing," he says. "There are diverse career paths for a computer scientist, such as systems librarian."

Banda's practical application of his computer science knowledge is evident in his daily work. He plays a key role in managing and configuring the library's technology, including RFID self-check machines and automated chutes. Notably, a YouTube demonstration he created showcases his ability to bridge the digital divide for library users.

The most daunting challenge was his mini-dissertation. "It demanded immense time, often encroaching on my work hours," he recalls. "Balancing coding, documentation, and assisting patrons was incredibly difficult."

 

Evolving technology and support

His fascination with computer science stems from its dynamic nature. "Technology evolves daily," he says. "I'm particularly drawn to artificial intelligence and machine learning, as I envision a future where everything is digitised. My childhood dream was to build robots that could assist in households."

Banda credits several mentors for their profound impact on his academic journey. Prof Richard Ocaya, Prof Lehlohonolo Koao, Dr Andronicus Akinyelu, and Adebola Musa all provided crucial guidance and support. He also acknowledges the invaluable emotional support from Nonhlanhla Moleleki, a counsellor, and Khethiwe Bhiyo, his academic adviser. "The community at large played a vital role," he emphasises.

His advice to students working while studying is simple yet powerful: "Everything is possible with consistency, persistence, determination, and dedication. Keep focused, no matter how long it takes."

His research project, an online dining hall purchasing system, exemplifies his commitment to community-driven innovation. "It has reduced wait times and queues across our campuses," he says proudly.

Looking ahead, Banda plans to pursue a master's degree, aiming to combine his library experience with his technical expertise. "I envision libraries becoming increasingly digitised, and I want to be part of that evolution," he states.

The skills he gained – time management, multitasking, collaboration, and the courage to seek help – will be invaluable in his future endeavours. "Most importantly, believe in yourself," he concluded.

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept