Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

UFS cardiac team leading with project
2017-05-31

 Description: Cardiac team read more Tags: Cardiac team read more

Prof Peter Schultheiss of the Charité University in Berlin,
Germany, visited the Robert WM Frater Centre for
Cardiovascular Research at the UFS for a study regarding
cardiomyopathy, a significant cause of fatal heart failure
among Africans. From the left are Dr Glen Taylor,
Dr Danie Buys, Prof Makoali Makatoko,
Prof Schultheiss and Prof Francis Smit.
Photo: Rulanzen Martin

A team of cardiac doctors associated with the Robert WM Frater Cardiovascular Research Centre at the University of the Free State’s (UFS) Faculty of Health Sciences has commenced with a pioneering research project regarding idiopathic dilating cardiomyopathy.  

An Afrocentric research focus
Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS and Head of the Frater Centre, describes dilating cardiomyopathy as a heart muscle disease that is quite common, particularly among people of African descent. The disease weakens the heart muscle, which in turn leads to heart failure.

“To date there is no curable treatment for this condition and 50% of patients that have shown heart failure, died within a period of five years. The causes of this condition have been unknown in the majority of patients. But over the past few years major strides have been made where virus infections of the heart muscle or myocarditis have been identified as a possible underlying cause. Various genetic diseases are also linked to it,” says Prof Smit.

International collaborations ensure success
According to Prof Smit, the project is being run in conjunction with Prof Heinz-Peter Schultheiss of the Charité University and the Institute for Cardiac Diagnostics and Therapy in Berlin, Germany.

“We have been working on the project over the past 18 months and I have twice visited Prof Schultheiss in Germany. He is now visiting us in Bloemfontein. We have established a collaborative project focused on patients in central South Africa”.
Prof Schultheiss is a world leader regarding the diagnosis, pathology and treatment of dilating cardiomyopathy, says Prof Smit.

“He brings a lifetime of research experience to Bloemfontein and is internationally renowned as the father of myocardial or heart muscle biopsies.

“His pioneering work on the discipline has led to diagnostic accuracy that has induced purposeful and personalised treatment of dilating cardiomyopathy and has brought about dramatic changes in some subsets of patients’ life expectancy and their cure.”

Solving problems close to home
According to Prof Mokoali Makatoko, Head of the Department of Cardiology, there are more than 1500 new cases of heart failure identified annually at the Universitas Academic Hospital, of which approximately 30% are attributed to cardiomyopathy. “With the use of endomyocardial biopsies the team hopes to treat viruses unique to Southern Africa as well as other underlying causes of dilating cardiomyopathy.”

Prof Stephen Brown, Head of Paediatric Cardiology at the Universitas Academic Hospital, says children suffering from this disease never reach a mature age and those under his supervision will also be undergoing these tests. Various other departments at the UFS will also participate in this project. Profs Makatoko and Brown did the first four endomyocardial biopsies under the management of Prof Schultheiss during the past week. The results will be available in the coming weeks after which the project will be officially launched and patient recruitment will start in earnest.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept