Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

UFS Camerata ends concert season on a high note
2017-11-02

Description: UFS Camerata  Tags: UFS Camerata  

The final concert at Endler Hall at Stellenbosch University, presented by the
Endler Concert Series, was attended by the UFS Rector and Vice-Chancellor,
Prof Francis Petersen and Mrs Cheslyn Petersen. Here, on stage, is Prof Petersen
with the Camerata.
Photo: Supplied

The OSM Camerata (OSMC) of the Odeion School of Music at the University of the Free State ended the 2017 concert season on a high note with two gala concerts presented in the Western Cape as part of the ensemble’s fifth birthday celebrations. The first concert took place at the well-known Hugo Lambrechts Auditorium in Parow on 20 October 2017. A Stellenbosch University audience also had the privilege of listening to the Camerata at Endler Hall the following day.

A substantial part of the concert programme recited during the concerts was dedicated to prolific South African composer, Prof Hendrik Hofmeyr, in honour of his 60th birthday on 20 November 2017. The ensemble recited Super Flumina Babylonis, Notturno Elegiaco & Spokewals/Phantom Waltz - all works commissioned from Prof Hofmeyr for the OSMC.

The Odeion School of Music awarded the Order of the OSM to Prof Hofmeyr during the concert in gratitude for his tremendous contribution as a South African composer.

The final concert at Endler Hall, presented by the Endler Concert Series, was attended by the UFS Rector and Vice-Chancellor, Prof Francis Petersen, and Mrs Cheslyn Petersen.

According to Marius Coetzee from the Odeion School of Music, the OSMC was strategically founded in 2012 as the OSM’s flagship chamber orchestra with its main objective being to create a catalyst for excellence. From a pedagogical perspective, the OSMC serves as an incubator to nurture fully rounded musicians who are thoroughly prepared for the demands of their trade as orchestral musicians, soloists and conductors. 

Responding to the demand for excellence, on 1 September 2017 it was announced that the OSMC received first prize for the 2017 Ictus International Music Competition (US) as the winner of the category for Conservatory and University Orchestras.

Louis van der Watt, head of strings at the University of Stellenbosch Conservatory and vice conductor of the university’s symphony orchestra, remarked that the OSMC presented an excellent concert. Audience members concurred, saying the OSM Camerata was setting new standards for orchestral playing in South Africa.

Review from Louis van der Watt, University of Stellenbosch (available in Afrikaans)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept