Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

First doctorate in Thoracic Surgery in Africa awarded
2009-05-12

The University of the Free State (UFS) has become the first university in Africa to award a Ph.D. degree in Thoracic Surgery. The degree was conferred on Prof. Anthony Linegar from the university’s Department of Cardiothoracic Surgery during its recent graduation ceremony.

Thoracic surgery is a challenging subspecialty of cardiothoracic surgery. It began in South Africa in the 1940s and is a broad medico-surgical specialist discipline that involves the diagnosis, operative and peri-operative treatment of acquired and congenital non-cardiac ailments of the chest.

Prof. Linegar became the first academic to conduct a mixed methods analysis of this surgical specialty, which included a systematic review of all the research done in this field in South Africa. The title of his thesis is A Model for the Development of Thoracic Surgery in Central South Africa. The research was based on the hypothesis of a performance gap between the burden of disease in the community and the actual service provision. It makes use of systems theory and project management concepts to develop a model aimed at the development of thoracic surgery.

The research proved that there is a significant under provision of clinical services in thoracic surgery. This was quantified to a factor of 20 times less than should be the case, in diseases such as lung and oesophagus cancer. According to Prof. Linegar, there are multiple reasons for this. Listed amongst these reasons is the fact that thoracic surgery is not part of the undergraduate education in medical training. There tends to be a low level of awareness amongst clinicians as to what the thoracic surgeon offers their patients. The diagnostic and referral patterns in primary and secondary health facilities, where diseases must be picked up and referred early, are not functioning well in this regard. In addition, relatively few cardiothoracic surgeons express an interest in thoracic surgery.

Prof. Linegar’s model is named the ATLAS Mode, which is an acronym for the Advancement of Thoracic Surgery through Analysis and Strategic Planning. It includes the raising of awareness of the role of the specialist thoracic surgeon in the treatment of patients with thoracic diseases as part of the solution to the problem. Furthermore, it aims to develop an accessible and sustainable specialist service that adequately provides for the needs of the community, and that is appropriately represented in health administration circles.

His promoters were Prof. Gert van Zyl, Head of the School of Medicine at the UFS, Prof. Peter Goldstraw, from the Imperial College of London, United Kingdom (UK) and Prof. Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS.

Prof. Linegar has been with the UFS since 2004, is a graduate from Stellenbosch University in 1984 and completed his postgraduate training in Cardiothoracic Surgery at the University of Cape Town. He was granted a Fellowship in Thoracic Surgery at the Royal Brompton Hospital in London, UK and has since held consultant positions at the UFS, Stellenbosch University and in private practice. He has been involved in registrar training since returning from the UK in 1994 and has extensive experience in intensive care medicine. He has published widely, has presented papers at many international conferences, has been invited as a speaker on many occasions and has won awards for best presentation on three occasions.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
12 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept