Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

Reconciliation ceremony brings a closure to the Reitz incident
2011-02-08

The South African Human Rights Commission (SAHRC) and the University of the Free State (UFS)
are pleased to announce the successful conclusion of the Equality Court complaint against the four
former UFS students for their recording and dissemination of a video which demeaned and
humiliated five university workers in 2007.

The closure of the complaint culminated tonight in a moving reconciliation ceremony held on the
Main Campus of the UFS in Bloemfontein. The key event of the evening included the reading of
messages of apology from Prof. Teuns Verschoor, Vice-Rector, on behalf of the institution, and Mr
Danie Grobler, on behalf of the former students; and a message of acceptance of the apologies
from Ms Emmah Koko on behalf of the workers.

Deputy Chairperson of the SAHRC Commissioner, Pregs Govender, said of this historic event:
“The courage and compassion shown by the workers together with the students’ willingness to
embrace the spirit of change have enabled a process of justice, transformation and reconciliation
that is an inspiring example for South Africa. The process, led by Prof. Jonathan Jansen, Vice-
Chancellor and Rector of the UFS, whose term began just after this incident, has laid a significant
foundation for the future. It is significant, not just for this university, but for all educational
institutions, including schools.”

“The ceremony of apology, forgiveness, and reconciliation represents a historic event – not only for
our campus, but also for the country. It lays the groundwork for building a new university culture and
climate. “Reitz” hurt all of us, and we can finally close the book on the past and rebuild our
institution to be a truly non-racial university where we respect each other, first and foremost, for our
common humanity,” said Prof. Jansen.

Messages from among others former President Nelson Mandela, Archbishop Emeritus Desmond
Tutu, and the Presidency, were also read.

The day started off with a seminar on reconciliation, hosted by the SAHRC, UFS and the Mangaung
Local Municipality. Former Chief Justice Pius Langa was the keynote speaker at this event. Other
participants in the seminar included Mr Lawrence Mushwana, Chairperson of the SAHRC; Mr Wally
Serote from the Freedom Park; and Mr John Samuel, Director of the International Institute for
Studies in Race, Reconciliation and Social Justice at the UFS.


Media Release
25 February 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept