Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

Our Abe Bailey scholars are packing for the UK
2011-08-16

 

Nida Jooste and Ryan Lamb
Photo: Earl Coetzee

Academic excellence and strong leadership has become synonymous with our university, as our two Rhodes scholars for 2011, and the recent announcement of our two Abe Bailey scholars from the UFS have shown.

Nida Jooste and Ryan Lamb are two of the proud recipients of Abe Bailey Travel Bursaries and will be heading off to the United Kingdom on 26 August 2011, to visit several universities in England and Scotland. These two were chosen from hundreds of UFS applicants and will join Abe Bailey bursary holders from the rest of the country.

Both students are academic achievers, but also excel in other fields. This is what set them apart from the rest of the applicants for the bursaries.

Ryan (23), a Medical Physics honours student at our Faculty of Health Sciences, received the Senate Medal for the best bachelor’s degree student at the UFS. He was one of a hundred students at the Brightest Young Minds Summit this year and was one of the 2008 delegates to the World Youth Forum, hosted by the International Association for Poetry and Solidarity in Italy.

This young man is the founder of a group called Poets Anonymous, which provides a platform where poets, artists and dancers in Bloemfontein can express themselves.

Nida (21) is a very familiar face on our Bloemfontein Campus, as she served as the Deputy Chairperson of the Interim Student Council for the past year.

This fourth-year LL.B. student says she has known about the Abe Bailey bursary since her first year, but had to wait to apply, since the scholarship is only open to final-year students and junior lecturers. She applied last year, but did not even make it to the short list for candidates.

“I realise now that I was not involved enough then. Luckily I became much more involved in campus activities during the past year and also improved my academic performance greatly,” she says.

Nida and Ryan both hope to use the opportunity to learn new approaches to solving problems. Ryan says he is looking forward to the opportunity to network with other bursary holders and to share experiences with them, before returning to the UFS to implement what he had learned.

Nida says she also hopes to see how universities in First-World Countries operate, in order to apply that knowledge when she returns to the UFS.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept