Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

Three OSM students selected for the 2013 World Youth Symphony Orchestra
2013-01-25


Carmi Nel

Elsabe Raath

Maja van Dyk

25 January 2013

Three students from the University of the Free State’s Odeion School of Music (OSM) have proved their mettle. Carmi Viljoen (violin), Elsabé Raath (viola) and Maja van Dyk (viola), have been accepted into the prestigious World Youth Orchestra – an orchestra known worldwide for its quality and the prix de corps itadvances between nations.

Musica Europa, an Italian cultural association, founded the World Youth Orchestra (WYO) in its present guise in 2001. It has close ties with UNICEF and its mission is to combine music with social activities from cultures all over to world in order to enrich the cultural life of all.

Rigorous auditions are held which require applicants to upload video recordings onto a website (Vimeo). An international board of adjudicators subsequently listens to these recordings and select the best.The three OSM students were good enough to make the grade.

These three musicians are also members of the Free State Symphony Orchestra, as well as the MIAGI orchestra that toured Europe successfully last year. They are also outstanding chamber musicians. Carmi and Elsabé, as members of the Junior Odeion String Quartet, have shown that they are on par with international standards and have toured The Netherlands. In 2012, Maja van Dyk had been selected to perform as soloist with the National Youth String Orchestra under the baton of Swedish conductor and violinist, Fredrik Burstedt.

They first heard of the possibility of playing for the WYO through Anmari van der Westhuizen, lecturer at the OSM. Margarite Spies from the KZN Philharmonic Orchestra (KZNPO) had contacted her in search of worthy candidates. A scant three weeks later, they received the good news of their inclusion.

The orchestra, with representatives from five continents, will be touring South Africa this year and no less than nine South Africans have been included. The tour kicks off in Durban, followed by performances in East London, Plettenberg Bay, George, Knysna, Stellenbosch, with a grand finale in the Cape Town City Hall.

Works that will be performed include ‘’Romeo and Juliet’’ by Prokofiev, the irrepressible “Carnival Overture” by Dvorák, Barber’s ‘’Adagio for Strings’’ and part of Mahler’s majestic Fifth Symphony, all under the baton of the dynamic Josep Vicent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept