Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

First residence for UFS South Campus
2016-09-01

Description: First residence for UFS South Campus Tags: First residence for UFS South Campus

The residence has 146 double rooms with 17 kitchens
overall, each corridor has one kitchen. The residence
also has a gazellie and a conference room that
can accommodate 50 people.
Photo: Charl Devenish

The South Campus of the University of the Free State in Bloemfontein now has its own student residence. Completed in June 2016, the new residence can accommodate 250 undergraduate and 20 postgraduate students.
 
The residence has 270 beds, with 20 single-bedroom flats and 12 additional single rooms in the corridors.  Each of these single-bedroom flats has a kitchen, lounge, and a bathroom. There are 146 double rooms with 17 kitchens overall, each corridor has one kitchen. The residence also has a gazellie, a conference room that can accommodate 50 people, as well as eight laundry rooms with a drying area.
 
“Students at the South Campus have, up until now, been commuting from the Bloemfontein Campus and residential areas around town. We are extremely proud that accommodation will now be available to our students on the campus. Although the official opening of the residence is said to take place early in 2017, some students have already moved in,” says Prof Daniella Coetzee, Principal of the South Campus.
 
The residence was built at a cost of R57 million, which was funded by the UFS and the Department of Higher Education and Training.
 
Residence accessible to differently-abled people
The UFS strives to cater for differently-abled people by making all its buildings accessible to them. This residence is no exception, as it has two rooms available on the ground floor of Block C for differently-abled students. These rooms accommodate two students per room.
 
A one-of-a-kind newly installed water system
The residence is also the first at the university that has a grey-water system installed. Grey water is made up of bath, shower, and bathroom sink water. The water will then be reused for toilet flushing as well as for irrigation purposes on the campus.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept