Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 April 2025 | Story André Damons | Photo Supplied
Dr Tafadzwa Maramura
Dr Tafadzwa Clementine Maramura is a Senior Lecturer and NRF-Rated Researcher in the Department of Public Administration and Management at the UFS.

With roughly half the world’s population experiencing severe water scarcity for at least part of the year, according to the UN World Water Development Report 2024, a researcher from the University of the Free State (UFS) seeks to understand how South Africa and the rest of the African continent can ensure that every person has access to water.

Besides Dr Tafadzwa Clementine Maramura, Senior Lecturer and NRF-Rated Researcher in the Department of Public Administration and Management at the UFS, research focusing on service delivery, especially delivery of water to the most vulnerable and poorest households, her work also focuses on the water-health nexus. In February she was appointed the Secretary for the Institutional Governance and Regulations Framework – a sub-specialist group for the International Water Association (IWA), becoming the first black African female to be appointed to this position.

According to statistics quoted by Greenpeace, 5.52 billion people out of a population of 7.78 billion in 186 countries face water insecurity, of which, 1.34 billion are Africans, accounting for more than 90% of the continent’s population. The United Nations World Water Development Report 2024: water for prosperity and peace; facts, figures, and action examples state that as of 2022, 2.2 billion people were without access to safely managed drinking water.

 

Research focus

With this, and with the Sustainable Development Goals (SDGs) – especially Goal 6 (clean water and sanitation) – in mind, Dr Maramura seeks to understand how South Africa and the rest of Africa can ensure that everyone gets access to this particular resource. “My research focuses on water governance and sustainable service delivery, public policies, and the green economy in the African, as well as the South African, context. What I found is interesting and really saddening at the same time. When you break it down, you realise that one in every three people in Africa don’t have access to potable water.

“Water is a basic human right, you can survive without electricity and other luxuries, but not without water. Each time you brush your teeth or flush your toilet with at least 15 litres of clean water or you are watering your garden with clean water, there are people that actually don’t have access to basic drinking water,” says Dr Maramura.

She is also investigating what the government is doing to ensure it delivers on this service it is mandated to, as South Africa has all the policies in place, and the best constitution in the world, but still the poor and most vulnerable communities do not have water.

“Access to clean water is not just a basic need; it is a matter of dignity, equality, and survival. As a young African woman, through my research, I see first-hand how the burden of water scarcity falls disproportionately on women and girls, robbing us as women, of education, economic opportunities, and health.

“But we are not just victims – we are leaders in this fight. By empowering women and investing in sustainable water solutions, we can transform our communities and break the cycle of poverty. The time for action is now because water is life, and every African deserves it.”

 

The water-health nexus

Dr Maramura has book chapters coming out in June this year that focus on the water-health nexus in failed states, thereby merging SDG 3 and 6 on health and water respectively. Water plays an indispensable role in the world as it is important for accomplishing several other SDGs, such as zero hunger, poverty eradication, good health and well-being, and affordable and clean energy. It all depends on the achievement of goal 6.

Says Dr Maramura: “You cannot solve problems in isolation; you cannot look at the water problem in isolation. If you have a water problem, you have a health and education problem because kids can’t go to school if there is no water. Hospitals can’t function when there is no water.

“SDG 3 speaks to health and SDG 6 speaks to water and that is where the nexus is, nexus meaning connection between water and health. How can we ensure that we merge the two together and ensure researchers working on health and water can find common ground to address any challenges arising from the lack of water so that we don’t have these health issues?”

South Africa is an upper-middle-income country but still struggles to deliver potable water to everyone and many communities in the country still rely on ventilated pit latrines due to limited access to modern sanitation facilities. With the deadline for achieving the 17 SDGs only five years away, South Africa is at risk of failing to achieve the SDGs.

 

Solving the water problems

According to Dr Maramura, there is no magic wand that can be used to solve all the country's water problems, but a collaborative and comprehensive effort is needed. “There is work that needs to be done. The government, private sector, the communities, as well as other role players need to work together. South Africa is a water-stressed country with rainfall below the global average. We realised that we have scarce groundwater resources.

“The community needs to understand, participate, and be aware of how much damage we can do by just drilling boreholes and digging wells. The private sector needs to know what it is that they can do to ensure that they also play a part through their corporate social responsibility and philanthropic dimensions in assisting the community.”

From the government side, she says, the policies are there so the government needs to consult with the communities, the private sector, and all other relevant stakeholders. They need to involve affected communities and after consultations, they need to engage these communities because they understand their problem best.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept