Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 April 2025 | Story André Damons | Photo Supplied
Dr Tafadzwa Maramura
Dr Tafadzwa Clementine Maramura is a Senior Lecturer and NRF-Rated Researcher in the Department of Public Administration and Management at the UFS.

With roughly half the world’s population experiencing severe water scarcity for at least part of the year, according to the UN World Water Development Report 2024, a researcher from the University of the Free State (UFS) seeks to understand how South Africa and the rest of the African continent can ensure that every person has access to water.

Besides Dr Tafadzwa Clementine Maramura, Senior Lecturer and NRF-Rated Researcher in the Department of Public Administration and Management at the UFS, research focusing on service delivery, especially delivery of water to the most vulnerable and poorest households, her work also focuses on the water-health nexus. In February she was appointed the Secretary for the Institutional Governance and Regulations Framework – a sub-specialist group for the International Water Association (IWA), becoming the first black African female to be appointed to this position.

According to statistics quoted by Greenpeace, 5.52 billion people out of a population of 7.78 billion in 186 countries face water insecurity, of which, 1.34 billion are Africans, accounting for more than 90% of the continent’s population. The United Nations World Water Development Report 2024: water for prosperity and peace; facts, figures, and action examples state that as of 2022, 2.2 billion people were without access to safely managed drinking water.

 

Research focus

With this, and with the Sustainable Development Goals (SDGs) – especially Goal 6 (clean water and sanitation) – in mind, Dr Maramura seeks to understand how South Africa and the rest of Africa can ensure that everyone gets access to this particular resource. “My research focuses on water governance and sustainable service delivery, public policies, and the green economy in the African, as well as the South African, context. What I found is interesting and really saddening at the same time. When you break it down, you realise that one in every three people in Africa don’t have access to potable water.

“Water is a basic human right, you can survive without electricity and other luxuries, but not without water. Each time you brush your teeth or flush your toilet with at least 15 litres of clean water or you are watering your garden with clean water, there are people that actually don’t have access to basic drinking water,” says Dr Maramura.

She is also investigating what the government is doing to ensure it delivers on this service it is mandated to, as South Africa has all the policies in place, and the best constitution in the world, but still the poor and most vulnerable communities do not have water.

“Access to clean water is not just a basic need; it is a matter of dignity, equality, and survival. As a young African woman, through my research, I see first-hand how the burden of water scarcity falls disproportionately on women and girls, robbing us as women, of education, economic opportunities, and health.

“But we are not just victims – we are leaders in this fight. By empowering women and investing in sustainable water solutions, we can transform our communities and break the cycle of poverty. The time for action is now because water is life, and every African deserves it.”

 

The water-health nexus

Dr Maramura has book chapters coming out in June this year that focus on the water-health nexus in failed states, thereby merging SDG 3 and 6 on health and water respectively. Water plays an indispensable role in the world as it is important for accomplishing several other SDGs, such as zero hunger, poverty eradication, good health and well-being, and affordable and clean energy. It all depends on the achievement of goal 6.

Says Dr Maramura: “You cannot solve problems in isolation; you cannot look at the water problem in isolation. If you have a water problem, you have a health and education problem because kids can’t go to school if there is no water. Hospitals can’t function when there is no water.

“SDG 3 speaks to health and SDG 6 speaks to water and that is where the nexus is, nexus meaning connection between water and health. How can we ensure that we merge the two together and ensure researchers working on health and water can find common ground to address any challenges arising from the lack of water so that we don’t have these health issues?”

South Africa is an upper-middle-income country but still struggles to deliver potable water to everyone and many communities in the country still rely on ventilated pit latrines due to limited access to modern sanitation facilities. With the deadline for achieving the 17 SDGs only five years away, South Africa is at risk of failing to achieve the SDGs.

 

Solving the water problems

According to Dr Maramura, there is no magic wand that can be used to solve all the country's water problems, but a collaborative and comprehensive effort is needed. “There is work that needs to be done. The government, private sector, the communities, as well as other role players need to work together. South Africa is a water-stressed country with rainfall below the global average. We realised that we have scarce groundwater resources.

“The community needs to understand, participate, and be aware of how much damage we can do by just drilling boreholes and digging wells. The private sector needs to know what it is that they can do to ensure that they also play a part through their corporate social responsibility and philanthropic dimensions in assisting the community.”

From the government side, she says, the policies are there so the government needs to consult with the communities, the private sector, and all other relevant stakeholders. They need to involve affected communities and after consultations, they need to engage these communities because they understand their problem best.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept