Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2025 | Story Andre Damons | Photo Supplied
Health care
Those who took part in the community engagements are: From left Dr Kamo Mothibi from the UFS, Irene Mokgadi from CUT, Dr Mosebi Thejane (UFS), Ahlume Nkumbesi (UFS), Dr Lebogang Mogongoa (CUT), Minnie Mbokazi (UFS), Dr Happy Phage (CUT), Dr Phindile Shangase (UFS) and Teboho Mhlanga from the Free State Department of Health. Seated in from are Meshack Mothupi, driver from CUT, and Sipho Zulu (UFS).

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), and the Free State Department of Health’s Disability Unit, held community engagements recently by visiting rehabilitation services in Bloemfontein. 

These engagements were part of the co-funded project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease. This was phase two in this project with the last phase including a symposium that is expected to take place on 1 April on the UFS Bloemfontein Campus.

Qhomane Mhlanga, a representative from the Free State Department of Health who is actively involved in this project, and her team, identified rehabilitation services for a case study. They also identified stakeholders to be visited during this community engagement in order to gather information on their engagement with Mangaung University of the Free State Community Partnership Programme (MUCPP). The team also visited stakeholders at the Phelang Disability Home, Carel du Toit Special School, and the Department of Education (Inclusive Education). 

 

Research to improve health care service

Dr Phindile Shangase from the Division of Public Health, and Principal Investigator at UFS, says the purpose of community visits was to engage service providers on the implementation strategies. This includes analysing alignment of implementation strategies with the policy (National Rehabilitation Policy 2000, Free State Rehabilitation Policy Guidelines, Framework and Strategy for Disability and Rehabilitation Service in South Africa 2015-2020) as well as identifying facilitators and barriers to implementation.

“It is the intention of the Division of Public Health, UFS to continue collaborations with stakeholders in implementation science research to improve health care service delivery and outcomes. The Division of Public Health also intends to add postgraduate research studies on implementation science in the near future.

“The visit to the clinic sought to establish the services provided by the rehabilitation unit, the referral system, and how the unit collaborates with external stakeholders to enhance the service. We gained knowledge of categories of healthcare professionals in rehabilitation services, e.g., occupational therapists, physiotherapists, speech and language therapists, audiologists, orthotists and prosthetists, rehabilitation doctors, optometrists, community rehabilitation workers. Some of these professionals are not available in the facilities visited,” says Dr Shangase. 

It was identified that, she continues, early hearing screening services for children are not available at healthcare facilities. Early hearing screening helps identify hearing defects which could be managed early to avoid complications that lead to hampered education and poor quality of life.


Outcome of engagements

Before the community outreach began, the UFS/CUT team, in collaboration with the Department of Health, convened to discuss strategies for navigating the Implementation Science project. The meeting focused on identifying key stakeholders and developing approaches essential for the project's success, drawing insights from the Department of Health's Mangaung Metro implementation science case study. 

The team identified five primary approaches for the project: Health, Education, Livelihood, Social, and Empowerment. Additionally, the discussion highlighted both the barriers and enablers related to each approach, which are crucial for ensuring effective project implementation and sustainable outcomes. Free State rehabilitation policy guidelines document was also applied to evaluate the case study.

According to Dr Shangase, the outreach will help with drafting of an intervention plan to address policy implementation gaps identified. The information gathered will assist in commissioning further research to improve health outcomes. “The intention is to collaborate with the Department of Health to work on past research outputs, presented during research day conferences, for implementation in healthcare facilities. Newly identified research areas will also prompt projects in healthcare facilities, led by the academic partners, UFS, Division of Public Health as well as the Department of Health Sciences, CUT.”

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept