Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2025 | Story Andre Damons | Photo Supplied
Health care
Those who took part in the community engagements are: From left Dr Kamo Mothibi from the UFS, Irene Mokgadi from CUT, Dr Mosebi Thejane (UFS), Ahlume Nkumbesi (UFS), Dr Lebogang Mogongoa (CUT), Minnie Mbokazi (UFS), Dr Happy Phage (CUT), Dr Phindile Shangase (UFS) and Teboho Mhlanga from the Free State Department of Health. Seated in from are Meshack Mothupi, driver from CUT, and Sipho Zulu (UFS).

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), and the Free State Department of Health’s Disability Unit, held community engagements recently by visiting rehabilitation services in Bloemfontein. 

These engagements were part of the co-funded project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease. This was phase two in this project with the last phase including a symposium that is expected to take place on 1 April on the UFS Bloemfontein Campus.

Qhomane Mhlanga, a representative from the Free State Department of Health who is actively involved in this project, and her team, identified rehabilitation services for a case study. They also identified stakeholders to be visited during this community engagement in order to gather information on their engagement with Mangaung University of the Free State Community Partnership Programme (MUCPP). The team also visited stakeholders at the Phelang Disability Home, Carel du Toit Special School, and the Department of Education (Inclusive Education). 

 

Research to improve health care service

Dr Phindile Shangase from the Division of Public Health, and Principal Investigator at UFS, says the purpose of community visits was to engage service providers on the implementation strategies. This includes analysing alignment of implementation strategies with the policy (National Rehabilitation Policy 2000, Free State Rehabilitation Policy Guidelines, Framework and Strategy for Disability and Rehabilitation Service in South Africa 2015-2020) as well as identifying facilitators and barriers to implementation.

“It is the intention of the Division of Public Health, UFS to continue collaborations with stakeholders in implementation science research to improve health care service delivery and outcomes. The Division of Public Health also intends to add postgraduate research studies on implementation science in the near future.

“The visit to the clinic sought to establish the services provided by the rehabilitation unit, the referral system, and how the unit collaborates with external stakeholders to enhance the service. We gained knowledge of categories of healthcare professionals in rehabilitation services, e.g., occupational therapists, physiotherapists, speech and language therapists, audiologists, orthotists and prosthetists, rehabilitation doctors, optometrists, community rehabilitation workers. Some of these professionals are not available in the facilities visited,” says Dr Shangase. 

It was identified that, she continues, early hearing screening services for children are not available at healthcare facilities. Early hearing screening helps identify hearing defects which could be managed early to avoid complications that lead to hampered education and poor quality of life.


Outcome of engagements

Before the community outreach began, the UFS/CUT team, in collaboration with the Department of Health, convened to discuss strategies for navigating the Implementation Science project. The meeting focused on identifying key stakeholders and developing approaches essential for the project's success, drawing insights from the Department of Health's Mangaung Metro implementation science case study. 

The team identified five primary approaches for the project: Health, Education, Livelihood, Social, and Empowerment. Additionally, the discussion highlighted both the barriers and enablers related to each approach, which are crucial for ensuring effective project implementation and sustainable outcomes. Free State rehabilitation policy guidelines document was also applied to evaluate the case study.

According to Dr Shangase, the outreach will help with drafting of an intervention plan to address policy implementation gaps identified. The information gathered will assist in commissioning further research to improve health outcomes. “The intention is to collaborate with the Department of Health to work on past research outputs, presented during research day conferences, for implementation in healthcare facilities. Newly identified research areas will also prompt projects in healthcare facilities, led by the academic partners, UFS, Division of Public Health as well as the Department of Health Sciences, CUT.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept