Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2025 | Story Andre Damons | Photo Supplied
Health care
Those who took part in the community engagements are: From left Dr Kamo Mothibi from the UFS, Irene Mokgadi from CUT, Dr Mosebi Thejane (UFS), Ahlume Nkumbesi (UFS), Dr Lebogang Mogongoa (CUT), Minnie Mbokazi (UFS), Dr Happy Phage (CUT), Dr Phindile Shangase (UFS) and Teboho Mhlanga from the Free State Department of Health. Seated in from are Meshack Mothupi, driver from CUT, and Sipho Zulu (UFS).

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), and the Free State Department of Health’s Disability Unit, held community engagements recently by visiting rehabilitation services in Bloemfontein. 

These engagements were part of the co-funded project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease. This was phase two in this project with the last phase including a symposium that is expected to take place on 1 April on the UFS Bloemfontein Campus.

Qhomane Mhlanga, a representative from the Free State Department of Health who is actively involved in this project, and her team, identified rehabilitation services for a case study. They also identified stakeholders to be visited during this community engagement in order to gather information on their engagement with Mangaung University of the Free State Community Partnership Programme (MUCPP). The team also visited stakeholders at the Phelang Disability Home, Carel du Toit Special School, and the Department of Education (Inclusive Education). 

 

Research to improve health care service

Dr Phindile Shangase from the Division of Public Health, and Principal Investigator at UFS, says the purpose of community visits was to engage service providers on the implementation strategies. This includes analysing alignment of implementation strategies with the policy (National Rehabilitation Policy 2000, Free State Rehabilitation Policy Guidelines, Framework and Strategy for Disability and Rehabilitation Service in South Africa 2015-2020) as well as identifying facilitators and barriers to implementation.

“It is the intention of the Division of Public Health, UFS to continue collaborations with stakeholders in implementation science research to improve health care service delivery and outcomes. The Division of Public Health also intends to add postgraduate research studies on implementation science in the near future.

“The visit to the clinic sought to establish the services provided by the rehabilitation unit, the referral system, and how the unit collaborates with external stakeholders to enhance the service. We gained knowledge of categories of healthcare professionals in rehabilitation services, e.g., occupational therapists, physiotherapists, speech and language therapists, audiologists, orthotists and prosthetists, rehabilitation doctors, optometrists, community rehabilitation workers. Some of these professionals are not available in the facilities visited,” says Dr Shangase. 

It was identified that, she continues, early hearing screening services for children are not available at healthcare facilities. Early hearing screening helps identify hearing defects which could be managed early to avoid complications that lead to hampered education and poor quality of life.


Outcome of engagements

Before the community outreach began, the UFS/CUT team, in collaboration with the Department of Health, convened to discuss strategies for navigating the Implementation Science project. The meeting focused on identifying key stakeholders and developing approaches essential for the project's success, drawing insights from the Department of Health's Mangaung Metro implementation science case study. 

The team identified five primary approaches for the project: Health, Education, Livelihood, Social, and Empowerment. Additionally, the discussion highlighted both the barriers and enablers related to each approach, which are crucial for ensuring effective project implementation and sustainable outcomes. Free State rehabilitation policy guidelines document was also applied to evaluate the case study.

According to Dr Shangase, the outreach will help with drafting of an intervention plan to address policy implementation gaps identified. The information gathered will assist in commissioning further research to improve health outcomes. “The intention is to collaborate with the Department of Health to work on past research outputs, presented during research day conferences, for implementation in healthcare facilities. Newly identified research areas will also prompt projects in healthcare facilities, led by the academic partners, UFS, Division of Public Health as well as the Department of Health Sciences, CUT.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept