Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2025 | Story Andre Damons | Photo Supplied
Prof Wayne Truter
Prof Wayne Truter, Research Professor at the UFS Centre for Mineral Biogeochemistry, and Executive Management of the UFS Green Futures Hub.

Hosting the South African Circular Agriculture Initiative (SACAI) – an initiative of the Department of Science, Technology and Innovation’s (DSTI) – will help position the Green Futures Hub at the University of the Free State (UFS) as a leader in circularity in agriculture.

The UFS Green Futures Hub was selected to host the SACAI from 1 January 2025-31 March 2026. The funding received will be used to conduct workshops with stakeholders to develop a strategy to strengthen South Africa’s science, technology, and innovation for a circular economy in the agriculture sector.

The SACAI, under the leadership of Prof Wayne Truter, Research Professor at the UFS Centre for Mineral Biogeochemistry, and Executive Management of the UFS Green Futures Hub, aims to advance the principles of the circular economy and modernise agriculture in line with the South African government's aspirations. These goals are outlined in the Science, Technology, and Innovation (STI) Decadal Plan (2022-2032) and the Circular Economy STI Strategy.

 

Elevating the UFS’ visibility

The UFS Green Future Hub is a virtual platform in the Faculty of Natural and Agricultural Sciences (NAS), to facilitate integration and leverage capabilities to facilitate third stream funding and industry collaboration. It provides an interface and support structure for researchers to engage with funders and partners through the Hub.

Prof Truter says it is a great honour and privilege to have been awarded this initiative. “The funding that comes with SACAI will elevate our visibility in agriculture in the country and will help position Green Futures Hub as a leader in circularity in agriculture. A key objective of SACAI is to leverage science, technology, and innovation to enhance the value of the national system of innovation (NSI) within the agriculture sector. 

“The initiative will align with the priorities set out in the Circular Economy STI Strategy (2024-2034), focusing on resource efficiency, regenerative agriculture, sustainable agro-processing, and biorefinery development in South Africa. Through collaborations with other public research institutions, the hub will drive STI implementation in these critical areas,” says Prof Truter.

 

Objectives of SACAI 

The objective of SACAI is to give effect to the (i) circular economy, and (ii) modernising agriculture, aspirations of the South African government. The SACAI aims to advance the principles of the circular economy and modernise agriculture in line with the South African government’s aspirations. 

Simultaneously, Prof Truter explains, the objectives of the SACAI align with the vision of the UFS Green Futures Hub to be a global leader in advancing the understanding and application of sustainable practices for life with land and water, in developing contexts. By leveraging the latest advancements in research, technology, and innovation, the hub aims to create a thriving future where communities harmonise with natural and agricultural environments, ensuring the well-being of current and future generations, which has a particular focus on modernising agriculture and capacity development. 

Through STI, the SACAI will support the South African agriculture sector to adopt, scale and accelerate circular practices and technology. The SACAI will act through a hub-and-spoke model, to build and strengthen a national system of innovation, and associated capability, and will establish and strengthen strategic regional and international STI partnerships, to directly support industry and other sector stakeholders, serving as a facilitator of relevant research and related outputs.

 

UFS’ Vision 130 

“A South African Circular Agricultural Initiative perfectly aligns with our research-led, student-centred, and regionally engaged university by driving innovation and knowledge production in sustainable agriculture. This initiative will enable the university to contribute to development and social justice by advancing circular farming practices that reduce waste, optimise resources, and promote environmental sustainability, particularly in rural areas. 

“This fosters greater food security and resilience, benefiting marginalised communities, and addressing social inequalities within the agricultural sector. By involving our students, this initiative will directly support the student-centred approach, offering hands-on learning experiences that equip graduates with cutting-edge skills in circular economy principles,” says Prof Truter. 

The university’s Vision 130 focus on diversity, inclusion, and equity is reflected in the initiative’s emphasis on sharing knowledge and resources equitably, ensuring maximum societal impact and advancing a more just and sustainable agricultural system across South Africa.

Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation, says: “This accolade speaks volumes of the calibre of our scholars and the recognition of our expertise in the agricultural domain. The UFS is exceptionally proud of Prof Truter’s drive, initiatives, vision and foresight. Under his leadership, we will augment and inflect even further our standing and position in the circular economy of agriculture. Reddy added: “We will not simply be the heartland but the growing soul and substance of what agriculture might become through research, implementation and impact. We are watching this space with deep curiosity.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept