Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2025 | Story Andre Damons | Photo Supplied
Prof Wayne Truter
Prof Wayne Truter, Research Professor at the UFS Centre for Mineral Biogeochemistry, and Executive Management of the UFS Green Futures Hub.

Hosting the South African Circular Agriculture Initiative (SACAI) – an initiative of the Department of Science, Technology and Innovation’s (DSTI) – will help position the Green Futures Hub at the University of the Free State (UFS) as a leader in circularity in agriculture.

The UFS Green Futures Hub was selected to host the SACAI from 1 January 2025-31 March 2026. The funding received will be used to conduct workshops with stakeholders to develop a strategy to strengthen South Africa’s science, technology, and innovation for a circular economy in the agriculture sector.

The SACAI, under the leadership of Prof Wayne Truter, Research Professor at the UFS Centre for Mineral Biogeochemistry, and Executive Management of the UFS Green Futures Hub, aims to advance the principles of the circular economy and modernise agriculture in line with the South African government's aspirations. These goals are outlined in the Science, Technology, and Innovation (STI) Decadal Plan (2022-2032) and the Circular Economy STI Strategy.

 

Elevating the UFS’ visibility

The UFS Green Future Hub is a virtual platform in the Faculty of Natural and Agricultural Sciences (NAS), to facilitate integration and leverage capabilities to facilitate third stream funding and industry collaboration. It provides an interface and support structure for researchers to engage with funders and partners through the Hub.

Prof Truter says it is a great honour and privilege to have been awarded this initiative. “The funding that comes with SACAI will elevate our visibility in agriculture in the country and will help position Green Futures Hub as a leader in circularity in agriculture. A key objective of SACAI is to leverage science, technology, and innovation to enhance the value of the national system of innovation (NSI) within the agriculture sector. 

“The initiative will align with the priorities set out in the Circular Economy STI Strategy (2024-2034), focusing on resource efficiency, regenerative agriculture, sustainable agro-processing, and biorefinery development in South Africa. Through collaborations with other public research institutions, the hub will drive STI implementation in these critical areas,” says Prof Truter.

 

Objectives of SACAI 

The objective of SACAI is to give effect to the (i) circular economy, and (ii) modernising agriculture, aspirations of the South African government. The SACAI aims to advance the principles of the circular economy and modernise agriculture in line with the South African government’s aspirations. 

Simultaneously, Prof Truter explains, the objectives of the SACAI align with the vision of the UFS Green Futures Hub to be a global leader in advancing the understanding and application of sustainable practices for life with land and water, in developing contexts. By leveraging the latest advancements in research, technology, and innovation, the hub aims to create a thriving future where communities harmonise with natural and agricultural environments, ensuring the well-being of current and future generations, which has a particular focus on modernising agriculture and capacity development. 

Through STI, the SACAI will support the South African agriculture sector to adopt, scale and accelerate circular practices and technology. The SACAI will act through a hub-and-spoke model, to build and strengthen a national system of innovation, and associated capability, and will establish and strengthen strategic regional and international STI partnerships, to directly support industry and other sector stakeholders, serving as a facilitator of relevant research and related outputs.

 

UFS’ Vision 130 

“A South African Circular Agricultural Initiative perfectly aligns with our research-led, student-centred, and regionally engaged university by driving innovation and knowledge production in sustainable agriculture. This initiative will enable the university to contribute to development and social justice by advancing circular farming practices that reduce waste, optimise resources, and promote environmental sustainability, particularly in rural areas. 

“This fosters greater food security and resilience, benefiting marginalised communities, and addressing social inequalities within the agricultural sector. By involving our students, this initiative will directly support the student-centred approach, offering hands-on learning experiences that equip graduates with cutting-edge skills in circular economy principles,” says Prof Truter. 

The university’s Vision 130 focus on diversity, inclusion, and equity is reflected in the initiative’s emphasis on sharing knowledge and resources equitably, ensuring maximum societal impact and advancing a more just and sustainable agricultural system across South Africa.

Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation, says: “This accolade speaks volumes of the calibre of our scholars and the recognition of our expertise in the agricultural domain. The UFS is exceptionally proud of Prof Truter’s drive, initiatives, vision and foresight. Under his leadership, we will augment and inflect even further our standing and position in the circular economy of agriculture. Reddy added: “We will not simply be the heartland but the growing soul and substance of what agriculture might become through research, implementation and impact. We are watching this space with deep curiosity.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept