Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2025 | Story Andre Damons | Photo Supplied
Prof Wayne Truter
Prof Wayne Truter, Research Professor at the UFS Centre for Mineral Biogeochemistry, and Executive Management of the UFS Green Futures Hub.

Hosting the South African Circular Agriculture Initiative (SACAI) – an initiative of the Department of Science, Technology and Innovation’s (DSTI) – will help position the Green Futures Hub at the University of the Free State (UFS) as a leader in circularity in agriculture.

The UFS Green Futures Hub was selected to host the SACAI from 1 January 2025-31 March 2026. The funding received will be used to conduct workshops with stakeholders to develop a strategy to strengthen South Africa’s science, technology, and innovation for a circular economy in the agriculture sector.

The SACAI, under the leadership of Prof Wayne Truter, Research Professor at the UFS Centre for Mineral Biogeochemistry, and Executive Management of the UFS Green Futures Hub, aims to advance the principles of the circular economy and modernise agriculture in line with the South African government's aspirations. These goals are outlined in the Science, Technology, and Innovation (STI) Decadal Plan (2022-2032) and the Circular Economy STI Strategy.

 

Elevating the UFS’ visibility

The UFS Green Future Hub is a virtual platform in the Faculty of Natural and Agricultural Sciences (NAS), to facilitate integration and leverage capabilities to facilitate third stream funding and industry collaboration. It provides an interface and support structure for researchers to engage with funders and partners through the Hub.

Prof Truter says it is a great honour and privilege to have been awarded this initiative. “The funding that comes with SACAI will elevate our visibility in agriculture in the country and will help position Green Futures Hub as a leader in circularity in agriculture. A key objective of SACAI is to leverage science, technology, and innovation to enhance the value of the national system of innovation (NSI) within the agriculture sector. 

“The initiative will align with the priorities set out in the Circular Economy STI Strategy (2024-2034), focusing on resource efficiency, regenerative agriculture, sustainable agro-processing, and biorefinery development in South Africa. Through collaborations with other public research institutions, the hub will drive STI implementation in these critical areas,” says Prof Truter.

 

Objectives of SACAI 

The objective of SACAI is to give effect to the (i) circular economy, and (ii) modernising agriculture, aspirations of the South African government. The SACAI aims to advance the principles of the circular economy and modernise agriculture in line with the South African government’s aspirations. 

Simultaneously, Prof Truter explains, the objectives of the SACAI align with the vision of the UFS Green Futures Hub to be a global leader in advancing the understanding and application of sustainable practices for life with land and water, in developing contexts. By leveraging the latest advancements in research, technology, and innovation, the hub aims to create a thriving future where communities harmonise with natural and agricultural environments, ensuring the well-being of current and future generations, which has a particular focus on modernising agriculture and capacity development. 

Through STI, the SACAI will support the South African agriculture sector to adopt, scale and accelerate circular practices and technology. The SACAI will act through a hub-and-spoke model, to build and strengthen a national system of innovation, and associated capability, and will establish and strengthen strategic regional and international STI partnerships, to directly support industry and other sector stakeholders, serving as a facilitator of relevant research and related outputs.

 

UFS’ Vision 130 

“A South African Circular Agricultural Initiative perfectly aligns with our research-led, student-centred, and regionally engaged university by driving innovation and knowledge production in sustainable agriculture. This initiative will enable the university to contribute to development and social justice by advancing circular farming practices that reduce waste, optimise resources, and promote environmental sustainability, particularly in rural areas. 

“This fosters greater food security and resilience, benefiting marginalised communities, and addressing social inequalities within the agricultural sector. By involving our students, this initiative will directly support the student-centred approach, offering hands-on learning experiences that equip graduates with cutting-edge skills in circular economy principles,” says Prof Truter. 

The university’s Vision 130 focus on diversity, inclusion, and equity is reflected in the initiative’s emphasis on sharing knowledge and resources equitably, ensuring maximum societal impact and advancing a more just and sustainable agricultural system across South Africa.

Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation, says: “This accolade speaks volumes of the calibre of our scholars and the recognition of our expertise in the agricultural domain. The UFS is exceptionally proud of Prof Truter’s drive, initiatives, vision and foresight. Under his leadership, we will augment and inflect even further our standing and position in the circular economy of agriculture. Reddy added: “We will not simply be the heartland but the growing soul and substance of what agriculture might become through research, implementation and impact. We are watching this space with deep curiosity.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept