Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2025 | Story Martinette Brits | Photo Kaleidoscope Studios
Jeremiah Hlahla
Jeremiah Hlahla, 27, proudly graduates with a PhD in Botany.

At just 27 years old, Dr Jeremiah Hlahla has achieved a remarkable milestone: earning his PhD in Botany, conferred on Thursday 10 April. His journey is one of perseverance, academic curiosity, and the determination to rise above significant personal and financial challenges.  

 

Resilience rooted in early hardship 

Growing up in Nkomazi, Mpumalanga, Dr Hlahla’s early life was marked by profound loss. His mother passed away when he was still young, and in Grade 11, he lost his father. Left without the support of his immediate family, he was placed in an orphanage alongside his sister. Despite these immense challenges, Dr Hlahla remained focused on his education.  

“From Grade 10, I stayed behind at school to do my homework and study,” he recalls. “By Grade 12, I asked the pastor if I could use the church office to study. He allowed me, and throughout matric, I would go straight from school to the church office.” 

 

A passion for science and a decisive pivot 

Dr Hlahla’s fascination with science began in Grade 4 when he first encountered the topic of Matter and Materials. “It was a fascinating subject for me,” he says. By Grade 9, he had decided to become a scientist, though he was still unsure of the specific field. 

After matric, he negotiated with an Anglo-American bursary manager to study biology instead of electrical engineering. “I later applied for biochemistry and botany at the University of Johannesburg because I enjoyed biology - but over the years, I found plant science especially interesting.” 

The pivotal moment in his life came when he was awarded an Anglo-American scholarship. “That was a huge turning point in my life,” he says. “After matric, I didn’t know what I would do next. But after one psychometric exam and two rounds of interviews, I received the scholarship, and my life improved.” 

With renewed motivation, he continued his studies and pursued a Master's degree, despite having no financial resources at the time. “When I arrived at the University of the Free State (UFS), I had just left Pretoria with my bags and no money,” he recalls. His supervisor, Dr Makoena Moloi, recommended him for a National Research Foundation (NRF) grant to cover his expenses. He was later awarded a bursary from Carl Zeiss. 

“Dr Moloi wanted a hardworking person,” Dr Hlahla says. “She also helped me improve my academic writing.”

 

Perseverance through a pandemic 

The COVID-19 pandemic brought unexpected setbacks, derailing his MSc research. “After the lockdown, I returned to find my plants had died. I had to start from scratch,” he says. Despite this, he completed his experiments by August 2021 and submitted his MSc with distinction. 

“It is incredibly rewarding to see years of hard work culminate in a PhD,” he reflects. 

 

Looking ahead: Researching for a food-secure future 

Now a postdoctoral researcher in plant breeding, Dr Hlahla is working on developing drought-tolerant edamame cultivars – research inspired by his PhD work. 

 “What excites me the most is breeding drought-tolerant edamame cultivars based on my previous research,” he says. “I am also thrilled to be working with Prof Maryke Labuschagne and Prof Rouxlene van der Merwe.” 

Dr Hlahla’s journey has given him insight into what it takes to succeed against the odds. His message to students navigating hardship is clear: 

“Stay focused on your goals. How you respond to what happens to you will determine your future. Someone is always willing to help - so find support and use it. Hard work, willingness, and determination will take you far.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept