Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 April 2025 | Story Anthony Mthembu | Photo Supplied
Kay-leigh van Rooyen
Kay-Leigh van Rooyen, Research Assistant at the University of the Free State (UFS), was one of sixteen individuals selected to participate in the 2024 Abe Bailey Travel Bursary.

As one of only sixteen recipients of the prestigious 2024 Abe Bailey Travel Bursary, Kay-Leigh van Rooyen, Research Assistant at the University of the Free State (UFS), recently returned from a life-changing journey across the United Kingdom. Representing the UFS on this esteemed programme, van Rooyen joined a cohort of emerging South African leaders in a transformative cultural and academic exchange. 

Reflecting on the experience, she described it as “nothing short of amazing.” 

“The experience was so much more than just visiting new places,” she said. “It was about engaging in meaningful conversations, forming lasting relationships, and gaining fresh perspectives on global issues.”

The Abe Bailey Travel Bursary aims to empower young South Africans through leadership development, cross-cultural exchange, and exposure to international dialogue. According to van Rooyen, this initiative was a powerful platform for personal growth, enabling her to see the world – and South Africa - through new lens.

“I learned the power of perspective - how others view our country, and how to understand global challenges from diverse vantage points,” she said. “I also realised that leadership is not about titles, but about influence and empathy.” 

 

A journey through the UK 

The bursary cohort convened in Cape Town on 23 November 2023 before departing for the UK, where they travelled from London to Edinburgh and back. The programme officially concluded on 18 December 2024/3. 

During the tour, the group visited iconic institutions such as the Royal Observatory in Greenwich, the British Library, the Francis Crick Institute, and the Houses of Parliament. For van Rooyen, the highlight was the opportunity to engage with thought leaders and changemakers. 

“One of the most memorable moments was having lunch in a chamber of the House of Lords at the Palace of Westminster with Lord Karan Bilimoria, the founder and chairman of Cobra Beer. The conversation was insightful and inspiring,” she said.  

 

A global stage for the UFS

Van Rooyen emphasised the professional impact of the experience, noting how it shaped her perspective on the role of academia in society. 

“This experience has changed the way I approach my work. I’ve developed a deeper appreciation for the importance of bridging the gap between academia and industry - especially how we can make research more practical and impactful,” she explained. 

She also highlighted the broader benefit for the UFS community. 

“Global engagements like these position the UFS as part of the international conversation. Our students and staff have valuable insights to share,  and we can learn so much from other institutions.” 

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS and Chair of the university’s Abe Bailey Travel Bursary selection committee, echoed these sentiments. 

“The Travel Bursary so elegantly aligns with the vision and heart of the UFS - namely, to expose our students to a wider world and its global connections,” he said. 

 

Inspiring the next generation of UFS leaders 

Encouraging fellow UFS staff and students to apply for the bursary, van Rooyen emphasised the personal and professional rewards. 

“It challenges you to think critically, engage meaningfully, and build relationships with people you wouldn’t ordinarily meet,” she said. 

Prof Reddy praised van Rooyen for her achievements and representation of the UFS on a global stage.  

“Her experiences and insights demonstrate that she is an exceptional ambassador – not only as an Abe Bailey alumnus, but also as a symbol of the excellence the UFS strives for. We are extremely proud of Kay-Leigh and wish her well as we look forward to the great things that lie ahead for her.”

 

 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept