Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 April 2025 | Story Anthony Mthembu | Photo Supplied
Kay-leigh van Rooyen
Kay-Leigh van Rooyen, Research Assistant at the University of the Free State (UFS), was one of sixteen individuals selected to participate in the 2024 Abe Bailey Travel Bursary.

As one of only sixteen recipients of the prestigious 2024 Abe Bailey Travel Bursary, Kay-Leigh van Rooyen, Research Assistant at the University of the Free State (UFS), recently returned from a life-changing journey across the United Kingdom. Representing the UFS on this esteemed programme, van Rooyen joined a cohort of emerging South African leaders in a transformative cultural and academic exchange. 

Reflecting on the experience, she described it as “nothing short of amazing.” 

“The experience was so much more than just visiting new places,” she said. “It was about engaging in meaningful conversations, forming lasting relationships, and gaining fresh perspectives on global issues.”

The Abe Bailey Travel Bursary aims to empower young South Africans through leadership development, cross-cultural exchange, and exposure to international dialogue. According to van Rooyen, this initiative was a powerful platform for personal growth, enabling her to see the world – and South Africa - through new lens.

“I learned the power of perspective - how others view our country, and how to understand global challenges from diverse vantage points,” she said. “I also realised that leadership is not about titles, but about influence and empathy.” 

 

A journey through the UK 

The bursary cohort convened in Cape Town on 23 November 2023 before departing for the UK, where they travelled from London to Edinburgh and back. The programme officially concluded on 18 December 2024/3. 

During the tour, the group visited iconic institutions such as the Royal Observatory in Greenwich, the British Library, the Francis Crick Institute, and the Houses of Parliament. For van Rooyen, the highlight was the opportunity to engage with thought leaders and changemakers. 

“One of the most memorable moments was having lunch in a chamber of the House of Lords at the Palace of Westminster with Lord Karan Bilimoria, the founder and chairman of Cobra Beer. The conversation was insightful and inspiring,” she said.  

 

A global stage for the UFS

Van Rooyen emphasised the professional impact of the experience, noting how it shaped her perspective on the role of academia in society. 

“This experience has changed the way I approach my work. I’ve developed a deeper appreciation for the importance of bridging the gap between academia and industry - especially how we can make research more practical and impactful,” she explained. 

She also highlighted the broader benefit for the UFS community. 

“Global engagements like these position the UFS as part of the international conversation. Our students and staff have valuable insights to share,  and we can learn so much from other institutions.” 

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS and Chair of the university’s Abe Bailey Travel Bursary selection committee, echoed these sentiments. 

“The Travel Bursary so elegantly aligns with the vision and heart of the UFS - namely, to expose our students to a wider world and its global connections,” he said. 

 

Inspiring the next generation of UFS leaders 

Encouraging fellow UFS staff and students to apply for the bursary, van Rooyen emphasised the personal and professional rewards. 

“It challenges you to think critically, engage meaningfully, and build relationships with people you wouldn’t ordinarily meet,” she said. 

Prof Reddy praised van Rooyen for her achievements and representation of the UFS on a global stage.  

“Her experiences and insights demonstrate that she is an exceptional ambassador – not only as an Abe Bailey alumnus, but also as a symbol of the excellence the UFS strives for. We are extremely proud of Kay-Leigh and wish her well as we look forward to the great things that lie ahead for her.”

 

 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept