Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2025 | Story Precious Shamase | Photo Supplied
Robson Nkosi
Robson Nkosi in his academic regalia at the graduation for his honours degree.

Robson Siphosihle Nkosi's journey is a compelling narrative of resilience, determination, and academic achievement – a story that resonates deeply within the University of the Free State (UFS) community. Born in Mpumalanga and raised under challenging circumstances, Nkosi's path to academic success is a testament to his unwavering spirit.

 

Unwavering determination

His early life was marked by significant loss, having been raised initially by his grandmother, and subsequently by his mother, who tragically passed away just before his final year of high school at Bee Maseko Secondary School, a quintile 1 school in Sheepmoor, Mpumalanga. Facing financial hardship, he relied on the support of friends to complete his matriculation.

Despite these adversities, Nkosi's determination shone through. With the invaluable assistance of his high school teacher, Mokoena Libakiso – whom he now considers his mother – he applied to the UFS to pursue a teaching degree. Although initially accepted, funding delays resulted in his offer being withdrawn. Securing funding later, he enrolled in a BSocSci degree, majoring in Communication Science and Sociology, demonstrating his adaptability and commitment to higher education.

Nkosi’s initial aspiration to switch to a Bachelor of Education degree was redirected by the NSFAS N+1 rule. However, he refocused his goals, setting his sights on a PhD and a career in higher education lecturing. This strategic vision fuelled his academic pursuits.


Leadership. Excellence. PhD.

His leadership skills were honed during his final undergraduate year, serving as the Qwaqwa Campus SRC Deputy President and ISRC Treasurer General. His academic excellence was consistently recognised through academic merit bursaries and the UFS Partial Tuition Fee Bursary, which supported his honours studies. Living in Botshabelo and commuting to Bloemfontein, Nkosi demonstrated his dedication.

During his honours year, he not only excelled as a student, but also as a tutor and Career Ambassador. His academic prowess led to an invitation from his honours lecturer, Yzelle Du Plessis, to facilitate Communication Science classes. He completed his honours degree cum laude, specialising in Leadership Communication.

Nkosi's academic journey continued with a master’s in communication science, funded by the National Research Foundation (NRF). Simultaneously, he gained practical teaching experience as a junior lecturer. He recently completed his master's degree and is now pursuing a PhD in Communication Science, while continuing to teach final-year and honours students on the Bloemfontein Campus.


A life dedicated to education and leadership

His short-term goal is to secure a permanent lecturing position, while his long-term ambition is to become a professor of Communication Science and potentially assume a leadership role in higher education, the public sector, or civil society.

Robson Nkosi's story is a powerful example of resilience, academic excellence, and the transformative impact of education. His dedication and gratitude to those who supported him underscore the importance of community and mentorship. He stands as an inspiration to the UFS community, demonstrating that with determination and perseverance, even the most challenging circumstances can be overcome.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept