Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2025 | Story Precious Shamase | Photo Supplied
Robson Nkosi
Robson Nkosi in his academic regalia at the graduation for his honours degree.

Robson Siphosihle Nkosi's journey is a compelling narrative of resilience, determination, and academic achievement – a story that resonates deeply within the University of the Free State (UFS) community. Born in Mpumalanga and raised under challenging circumstances, Nkosi's path to academic success is a testament to his unwavering spirit.

 

Unwavering determination

His early life was marked by significant loss, having been raised initially by his grandmother, and subsequently by his mother, who tragically passed away just before his final year of high school at Bee Maseko Secondary School, a quintile 1 school in Sheepmoor, Mpumalanga. Facing financial hardship, he relied on the support of friends to complete his matriculation.

Despite these adversities, Nkosi's determination shone through. With the invaluable assistance of his high school teacher, Mokoena Libakiso – whom he now considers his mother – he applied to the UFS to pursue a teaching degree. Although initially accepted, funding delays resulted in his offer being withdrawn. Securing funding later, he enrolled in a BSocSci degree, majoring in Communication Science and Sociology, demonstrating his adaptability and commitment to higher education.

Nkosi’s initial aspiration to switch to a Bachelor of Education degree was redirected by the NSFAS N+1 rule. However, he refocused his goals, setting his sights on a PhD and a career in higher education lecturing. This strategic vision fuelled his academic pursuits.


Leadership. Excellence. PhD.

His leadership skills were honed during his final undergraduate year, serving as the Qwaqwa Campus SRC Deputy President and ISRC Treasurer General. His academic excellence was consistently recognised through academic merit bursaries and the UFS Partial Tuition Fee Bursary, which supported his honours studies. Living in Botshabelo and commuting to Bloemfontein, Nkosi demonstrated his dedication.

During his honours year, he not only excelled as a student, but also as a tutor and Career Ambassador. His academic prowess led to an invitation from his honours lecturer, Yzelle Du Plessis, to facilitate Communication Science classes. He completed his honours degree cum laude, specialising in Leadership Communication.

Nkosi's academic journey continued with a master’s in communication science, funded by the National Research Foundation (NRF). Simultaneously, he gained practical teaching experience as a junior lecturer. He recently completed his master's degree and is now pursuing a PhD in Communication Science, while continuing to teach final-year and honours students on the Bloemfontein Campus.


A life dedicated to education and leadership

His short-term goal is to secure a permanent lecturing position, while his long-term ambition is to become a professor of Communication Science and potentially assume a leadership role in higher education, the public sector, or civil society.

Robson Nkosi's story is a powerful example of resilience, academic excellence, and the transformative impact of education. His dedication and gratitude to those who supported him underscore the importance of community and mentorship. He stands as an inspiration to the UFS community, demonstrating that with determination and perseverance, even the most challenging circumstances can be overcome.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept