Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2025 | Story Precious Shamase | Photo Supplied
Robson Nkosi
Robson Nkosi in his academic regalia at the graduation for his honours degree.

Robson Siphosihle Nkosi's journey is a compelling narrative of resilience, determination, and academic achievement – a story that resonates deeply within the University of the Free State (UFS) community. Born in Mpumalanga and raised under challenging circumstances, Nkosi's path to academic success is a testament to his unwavering spirit.

 

Unwavering determination

His early life was marked by significant loss, having been raised initially by his grandmother, and subsequently by his mother, who tragically passed away just before his final year of high school at Bee Maseko Secondary School, a quintile 1 school in Sheepmoor, Mpumalanga. Facing financial hardship, he relied on the support of friends to complete his matriculation.

Despite these adversities, Nkosi's determination shone through. With the invaluable assistance of his high school teacher, Mokoena Libakiso – whom he now considers his mother – he applied to the UFS to pursue a teaching degree. Although initially accepted, funding delays resulted in his offer being withdrawn. Securing funding later, he enrolled in a BSocSci degree, majoring in Communication Science and Sociology, demonstrating his adaptability and commitment to higher education.

Nkosi’s initial aspiration to switch to a Bachelor of Education degree was redirected by the NSFAS N+1 rule. However, he refocused his goals, setting his sights on a PhD and a career in higher education lecturing. This strategic vision fuelled his academic pursuits.


Leadership. Excellence. PhD.

His leadership skills were honed during his final undergraduate year, serving as the Qwaqwa Campus SRC Deputy President and ISRC Treasurer General. His academic excellence was consistently recognised through academic merit bursaries and the UFS Partial Tuition Fee Bursary, which supported his honours studies. Living in Botshabelo and commuting to Bloemfontein, Nkosi demonstrated his dedication.

During his honours year, he not only excelled as a student, but also as a tutor and Career Ambassador. His academic prowess led to an invitation from his honours lecturer, Yzelle Du Plessis, to facilitate Communication Science classes. He completed his honours degree cum laude, specialising in Leadership Communication.

Nkosi's academic journey continued with a master’s in communication science, funded by the National Research Foundation (NRF). Simultaneously, he gained practical teaching experience as a junior lecturer. He recently completed his master's degree and is now pursuing a PhD in Communication Science, while continuing to teach final-year and honours students on the Bloemfontein Campus.


A life dedicated to education and leadership

His short-term goal is to secure a permanent lecturing position, while his long-term ambition is to become a professor of Communication Science and potentially assume a leadership role in higher education, the public sector, or civil society.

Robson Nkosi's story is a powerful example of resilience, academic excellence, and the transformative impact of education. His dedication and gratitude to those who supported him underscore the importance of community and mentorship. He stands as an inspiration to the UFS community, demonstrating that with determination and perseverance, even the most challenging circumstances can be overcome.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept