Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2025 | Story Tshepo Tsotetsi | Photo Supplied
EMS PhDs
Dr Shaun Watson, Prof Philippe Burger, Dr Marese Lombard, and Dr Ambrosé Du Plessis.

As the University of the Free State (UFS) continues to celebrate the achievements of its graduates during the April 2025 graduation ceremonies, three academic staff members from the UFS Faculty of Economic and Management Sciences (EMS) are among those marking a significant milestone with the successful completion of their doctoral degrees.

Prof Philippe Burger, Dean of the EMS Faculty, reflected on the significance of the moment and applauded the trio of new EMS PhD graduates: Dr Shaun Watson, Dr Marese Lombard, and Dr Ambrosé Ray du Plessis.

“For the EMS Faculty to have three staff members obtain a PhD on one day is very special,” Prof Burger said. “These colleagues have grown their standing in the scholarly community and are now, with a PhD in the bag, ready to take on the academic world and the world at large. The EMS Faculty places a high premium on our staff holding a PhD, so we strongly encourage those who are not in possession of a PhD to pursue one.”

Prof Burger added that their achievements not only reflect personal dedication and professional growth but also contribute to the University of the Free State’s Vision 130 goal: to have 75% of academic staff holding doctoral degrees by 2034.

The EMS academics who graduated during the April 2025 ceremonies are:

 

Dr Shaun Watson: Understanding markets through restatements

Dr Shaun Watson, a senior lecturer in the UFS School of Accountancy since 2006, earned his PhD in Management Accounting with a thesis titled ‘Market Efficiency and Share Price Reaction Following the Retrospective Restatement of Financial Statements of JSE-Listed Companies’. His study analysed how financial restatements affect market behaviour, providing key insights for policymakers and investors navigating emerging markets.

“For me, it was both a personal challenge and a professional goal,” Dr Watson said. “I’d often wondered if I had what it takes to complete a PhD and, as an academic, I saw it as the pinnacle of our field. My wife was the one who told me to ‘Nike – just do it!’ Her belief in me, along with the quiet support of my family, gave me the push I needed to start, and the strength to keep going.”

To those still considering the journey, Watson offered this advice: “Do it for yourself – because if you don’t, you will never finish. It is a demanding journey that requires sacrifice and perseverance, but the reward of discovering something meaningful is worth every moment.”

 

Dr Marese Lombard: Taxation as a tool for sustainable agriculture

Also from the School of Accountancy, Dr Marese Lombard received her PhD in Taxation. Her research, ‘Taxation as a Method to Promote Sustainable Agriculture in South Africa’, is the first of its kind to offer empirical evidence on how tax provisions could be used to incentivise sustainability in local agriculture.

“I hope to see a conversation regarding policy changes as to how taxation can be used as a positive method to impact sustainability,” Dr Lombard said. “If taxation can be used to further assist our agricultural industry to become more sustainable, it can not only increase our competitive edge but also address the concern of food security.”

Reflecting on her personal growth, she said, “It has taught me that we are more resilient than we think. The challenge of taking on a PhD has made me more open to other ideas and approaches, and more comfortable with criticism – not just in academia, but in life.”

 

Dr Ambrosé Ray du Plessis: Rethinking the political-administrative divide

From the Department of Public Administration and Management, Dr Ambrosé Ray du Plessis earned his PhD in Public Administration and Management. His thesis, ‘The Political-Administrative Dichotomy in Coalition-Led Metropolitan Municipalities: A South African Perspective’, developed a fresh conceptual framework for understanding the tensions and complexities within coalition-led governance, using the City of Johannesburg as a case study.

“For me, academia is a calling, and I believe that a PhD is an essential stepping stone to be successful in academia,” Dr Du Plessis said. “Being the first in my family to do a PhD motivated me to work harder, as I wanted to inspire those who will come after me.”

Balancing full-time lecturing and doctoral research required immense discipline: “I often had to work at night and over weekends to meet my deadlines… but the emotional and intellectual support from my PhD promoter, Prof Liezel Lues, was central to my success.”

Now, Dr Du Plessis hopes to deepen academic discourse on coalition politics: “My research addresses critical gaps and provides fresh insights into the political-administrative discourse as it can be applied to real-world coalition government problems in South Africa… I hope my work can leave a lasting impact – not only within academia but also in practical applications that benefit society.”

 

A testament to resilience and purpose

While their research topics differ vastly, all three describe their PhD journeys as transformative, both professionally and personally. From late nights and weekend writing sessions to intense supervision relationships, each story reflects a deeper commitment to scholarship – and to growing the UFS’s intellectual capital.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept