Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2025 | Story UFS Division of Student Affairs | Photo Supplied
SRC Graduations
Seventeen Campus Student Representative Council members are set to graduate during the week of 7 April 2025.

As the University of the Free State (UFS) commemorates the April 2025 graduation season, a group of student leaders is preparing to cross the stage not only as graduates but also as individuals who helped shape student life on our campuses.

The Office of Student Governance is celebrating 17 members of the Campus Student Representative Council (CSRC) who are graduating during the week of 7 April – a proud moment for the office and the broader UFS community.

These graduates have carried the responsibility of student leadership while staying committed to their academic journeys. Their names now join the long list of student leaders who’ve helped shape campus life and still crossed the finish line with their degrees in hand.

From Qwaqwa Campus, we celebrate Nomvuyo Nungu, Xolani Ntimane, Qhama Mqulo, Ayanda Madiba, Anele Mcineka, and Lebohang Mateka. From Bloemfontein Campus, we celebrate Martin Nyaka, Boikanyo Moleko, Portia Mtawarira, Ogorogile Moleme, Moses Davis, Oratile Lentsela, Naledi Mathakhoe, Siyabonga Dludla, Aphiwe Mbutuma, and Paballo Taoana.

Their contribution reflects the pillars of Student Affairs – student success and student development – and their legacy extends beyond office terms and meeting rooms.

Special recognition goes to those who also served on the Institutional SRC (ISRC): Nomvuyo Nungu, Martin Nyaka, Qhama Mqulo, Xolani Ntimane, and Ogorogile Moleme, whose leadership extended across all UFS campuses.

“To all current and aspiring student leaders, let this be a reminder: academic excellence and leadership can go hand in hand,” says Pholla Mbalane, Acting Head of Department for the Office of Student Governance. Continue to serve and lead, but never lose sight of your academic goals. Balance is not just possible, it is powerful.” 

Congratulations to our UFS leaders of the future!

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept