Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2025 | Story UFS Division of Student Affairs | Photo Supplied
SRC Graduations
Seventeen Campus Student Representative Council members are set to graduate during the week of 7 April 2025.

As the University of the Free State (UFS) commemorates the April 2025 graduation season, a group of student leaders is preparing to cross the stage not only as graduates but also as individuals who helped shape student life on our campuses.

The Office of Student Governance is celebrating 17 members of the Campus Student Representative Council (CSRC) who are graduating during the week of 7 April – a proud moment for the office and the broader UFS community.

These graduates have carried the responsibility of student leadership while staying committed to their academic journeys. Their names now join the long list of student leaders who’ve helped shape campus life and still crossed the finish line with their degrees in hand.

From Qwaqwa Campus, we celebrate Nomvuyo Nungu, Xolani Ntimane, Qhama Mqulo, Ayanda Madiba, Anele Mcineka, and Lebohang Mateka. From Bloemfontein Campus, we celebrate Martin Nyaka, Boikanyo Moleko, Portia Mtawarira, Ogorogile Moleme, Moses Davis, Oratile Lentsela, Naledi Mathakhoe, Siyabonga Dludla, Aphiwe Mbutuma, and Paballo Taoana.

Their contribution reflects the pillars of Student Affairs – student success and student development – and their legacy extends beyond office terms and meeting rooms.

Special recognition goes to those who also served on the Institutional SRC (ISRC): Nomvuyo Nungu, Martin Nyaka, Qhama Mqulo, Xolani Ntimane, and Ogorogile Moleme, whose leadership extended across all UFS campuses.

“To all current and aspiring student leaders, let this be a reminder: academic excellence and leadership can go hand in hand,” says Pholla Mbalane, Acting Head of Department for the Office of Student Governance. Continue to serve and lead, but never lose sight of your academic goals. Balance is not just possible, it is powerful.” 

Congratulations to our UFS leaders of the future!

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept