Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 April 2025 | Story UFS Division of Student Affairs | Photo Supplied
SRC Graduations
Seventeen Campus Student Representative Council members are set to graduate during the week of 7 April 2025.

As the University of the Free State (UFS) commemorates the April 2025 graduation season, a group of student leaders is preparing to cross the stage not only as graduates but also as individuals who helped shape student life on our campuses.

The Office of Student Governance is celebrating 17 members of the Campus Student Representative Council (CSRC) who are graduating during the week of 7 April – a proud moment for the office and the broader UFS community.

These graduates have carried the responsibility of student leadership while staying committed to their academic journeys. Their names now join the long list of student leaders who’ve helped shape campus life and still crossed the finish line with their degrees in hand.

From Qwaqwa Campus, we celebrate Nomvuyo Nungu, Xolani Ntimane, Qhama Mqulo, Ayanda Madiba, Anele Mcineka, and Lebohang Mateka. From Bloemfontein Campus, we celebrate Martin Nyaka, Boikanyo Moleko, Portia Mtawarira, Ogorogile Moleme, Moses Davis, Oratile Lentsela, Naledi Mathakhoe, Siyabonga Dludla, Aphiwe Mbutuma, and Paballo Taoana.

Their contribution reflects the pillars of Student Affairs – student success and student development – and their legacy extends beyond office terms and meeting rooms.

Special recognition goes to those who also served on the Institutional SRC (ISRC): Nomvuyo Nungu, Martin Nyaka, Qhama Mqulo, Xolani Ntimane, and Ogorogile Moleme, whose leadership extended across all UFS campuses.

“To all current and aspiring student leaders, let this be a reminder: academic excellence and leadership can go hand in hand,” says Pholla Mbalane, Acting Head of Department for the Office of Student Governance. Continue to serve and lead, but never lose sight of your academic goals. Balance is not just possible, it is powerful.” 

Congratulations to our UFS leaders of the future!

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept