Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2025 | Story Martinette Brits | Photo Barend Nagel
Mainstream Final Project
Five postgraduate students from Ethiopia and Togo with Prof Corli Witthuhn, coordinator of the MAINSTREAM project, during their academic exchange visit to the University of the Free State. From the left: Prudence Bilabina, Ame Houngo, Prof Corli Witthuhn, Gemedo Shengu, Fanny Sibabi, and Debela Bedada.

The University of the Free State (UFS) has welcomed a cohort of international students as part of the Mobility 4 Agricultural International Networks Supporting Thematic Resilience and Enhancing Adaptation and Mitigation (MAINSTREAM) project, a significant European Union-funded initiative aimed at boosting agricultural education and research across the African continent.

A group of postgraduate students from Togo and Ethiopia have recently joined the University of the Free State as part of the MAINSTREAM project. “Two doctoral students from Togo – Ame Houngo and Fanny Sibabi – are based in the Department of Sustainable Food Systems and Development and will be supervised by Dr Alba du Toit and Prof Maryke Labuschagne,” says Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at the UFS, who serves as the coordinator of the MAINSTREAM project. Master’s student Prudence Bilabina, also from Togo, is hosted by the Department of Agricultural Economics under the supervision of Prof Henry Jordaan.

From Ethiopia, doctoral student Debela Bedada and master’s student Gemedo Shengu are both pursuing their research in the Department of Agricultural Economics, supervised by Prof Nicky Matthews and Dr Janus Henning respectively.

A Ugandan student will soon join them on 22 April for a three-month traineeship. “He is an undergraduate Agriculture student who will register for a service-learning module at the UFS and spend the three months working on a farm,” explains Prof Witthuhn. The student hails from the Mountains of the Moon University in Uganda.

By June 2025, the university anticipates the arrival of four more students from Uganda – three at master’s level and one traineeship participant – bringing the total number of MAINSTREAM students hosted by UFS this year to ten.

 

Building a climate-resilient future through agricultural education

The MAINSTREAM project aims to foster education and skills improvement in agricultural knowledge systems, with a strong focus on climate change resilience. According to Prof Witthuhn, the project “strives to influence the common agenda for addressing education and skills improvement … targeting transformations with the tertiary agricultural education community, policy, and industry actors”.

An important aspect of the initiative is its emphasis on inclusion, particularly regarding African women who remain underrepresented in higher education agricultural programmes. “Mobility schemes will also be used to break cross-African gendered perceptions of agriculture … and to further provide for a gender-sensitive learning environment and institutional culture,” Prof Witthuhn notes.

The UFS’ participation forms part of a larger network of partner institutions across Africa and Europe, including Arsi University (Ethiopia), the University of Kara (Togo), the Mountains of the Moon University (Uganda), Jaramogi Oginga Odinga University of Science and Technology (JOOUST, Kenya), the University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN, Senegal), and the Weihenstephan-Triesdorf University of Applied Science (Germany).

 

Strengthening research, networks, and collaboration at the UFS

This four-year project, running from 2024 to 2027, will host two cohorts of students. “We are a partner in the project that will run over four years … one of the UFS master’s students, Rinus Behrens from the Department of Sustainable Food Systems and Development, is currently spending four months at JOOUST in Kenya as part of the programme,” adds Prof Witthuhn.

The presence of these students at the UFS marks a pivotal moment for both the institution and its international counterparts. “For the institution, it creates the opportunity for new networks, new research opportunities, internationalisation of our research endeavour, and increased research outputs,” she says.

During their stay, master’s and doctoral students will engage in academic research aligned with their fields of study, while traineeship students will gain hands-on agricultural experience on farms in the Bloemfontein area.

Bedada says the programme is already making a meaningful impact on his academic journey. “I am analysing the impact of agricultural mechanisation on food security and production. It is a big opportunity, because it gives me a chance to expand my knowledge and skills, and to develop my research work to international level.”

Similarly, Houngo says the experience so far has been enriching. “I have already learned a lot, and I hope to replicate the experience in my hometown,” he shares.

Behind the scenes, UFS staff and departments are instrumental in ensuring the programme’s success. “They provide host departments, academic leadership, and supervision to the six students,” says Prof Witthuhn, emphasising the collaborative effort required to support this international initiative.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept