Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2025 | Story Martinette Brits | Photo Barend Nagel
Mainstream Final Project
Five postgraduate students from Ethiopia and Togo with Prof Corli Witthuhn, coordinator of the MAINSTREAM project, during their academic exchange visit to the University of the Free State. From the left: Prudence Bilabina, Ame Houngo, Prof Corli Witthuhn, Gemedo Shengu, Fanny Sibabi, and Debela Bedada.

The University of the Free State (UFS) has welcomed a cohort of international students as part of the Mobility 4 Agricultural International Networks Supporting Thematic Resilience and Enhancing Adaptation and Mitigation (MAINSTREAM) project, a significant European Union-funded initiative aimed at boosting agricultural education and research across the African continent.

A group of postgraduate students from Togo and Ethiopia have recently joined the University of the Free State as part of the MAINSTREAM project. “Two doctoral students from Togo – Ame Houngo and Fanny Sibabi – are based in the Department of Sustainable Food Systems and Development and will be supervised by Dr Alba du Toit and Prof Maryke Labuschagne,” says Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at the UFS, who serves as the coordinator of the MAINSTREAM project. Master’s student Prudence Bilabina, also from Togo, is hosted by the Department of Agricultural Economics under the supervision of Prof Henry Jordaan.

From Ethiopia, doctoral student Debela Bedada and master’s student Gemedo Shengu are both pursuing their research in the Department of Agricultural Economics, supervised by Prof Nicky Matthews and Dr Janus Henning respectively.

A Ugandan student will soon join them on 22 April for a three-month traineeship. “He is an undergraduate Agriculture student who will register for a service-learning module at the UFS and spend the three months working on a farm,” explains Prof Witthuhn. The student hails from the Mountains of the Moon University in Uganda.

By June 2025, the university anticipates the arrival of four more students from Uganda – three at master’s level and one traineeship participant – bringing the total number of MAINSTREAM students hosted by UFS this year to ten.

 

Building a climate-resilient future through agricultural education

The MAINSTREAM project aims to foster education and skills improvement in agricultural knowledge systems, with a strong focus on climate change resilience. According to Prof Witthuhn, the project “strives to influence the common agenda for addressing education and skills improvement … targeting transformations with the tertiary agricultural education community, policy, and industry actors”.

An important aspect of the initiative is its emphasis on inclusion, particularly regarding African women who remain underrepresented in higher education agricultural programmes. “Mobility schemes will also be used to break cross-African gendered perceptions of agriculture … and to further provide for a gender-sensitive learning environment and institutional culture,” Prof Witthuhn notes.

The UFS’ participation forms part of a larger network of partner institutions across Africa and Europe, including Arsi University (Ethiopia), the University of Kara (Togo), the Mountains of the Moon University (Uganda), Jaramogi Oginga Odinga University of Science and Technology (JOOUST, Kenya), the University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN, Senegal), and the Weihenstephan-Triesdorf University of Applied Science (Germany).

 

Strengthening research, networks, and collaboration at the UFS

This four-year project, running from 2024 to 2027, will host two cohorts of students. “We are a partner in the project that will run over four years … one of the UFS master’s students, Rinus Behrens from the Department of Sustainable Food Systems and Development, is currently spending four months at JOOUST in Kenya as part of the programme,” adds Prof Witthuhn.

The presence of these students at the UFS marks a pivotal moment for both the institution and its international counterparts. “For the institution, it creates the opportunity for new networks, new research opportunities, internationalisation of our research endeavour, and increased research outputs,” she says.

During their stay, master’s and doctoral students will engage in academic research aligned with their fields of study, while traineeship students will gain hands-on agricultural experience on farms in the Bloemfontein area.

Bedada says the programme is already making a meaningful impact on his academic journey. “I am analysing the impact of agricultural mechanisation on food security and production. It is a big opportunity, because it gives me a chance to expand my knowledge and skills, and to develop my research work to international level.”

Similarly, Houngo says the experience so far has been enriching. “I have already learned a lot, and I hope to replicate the experience in my hometown,” he shares.

Behind the scenes, UFS staff and departments are instrumental in ensuring the programme’s success. “They provide host departments, academic leadership, and supervision to the six students,” says Prof Witthuhn, emphasising the collaborative effort required to support this international initiative.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept