Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2025 | Story Martinette Brits | Photo Barend Nagel
Mainstream Final Project
Five postgraduate students from Ethiopia and Togo with Prof Corli Witthuhn, coordinator of the MAINSTREAM project, during their academic exchange visit to the University of the Free State. From the left: Prudence Bilabina, Ame Houngo, Prof Corli Witthuhn, Gemedo Shengu, Fanny Sibabi, and Debela Bedada.

The University of the Free State (UFS) has welcomed a cohort of international students as part of the Mobility 4 Agricultural International Networks Supporting Thematic Resilience and Enhancing Adaptation and Mitigation (MAINSTREAM) project, a significant European Union-funded initiative aimed at boosting agricultural education and research across the African continent.

A group of postgraduate students from Togo and Ethiopia have recently joined the University of the Free State as part of the MAINSTREAM project. “Two doctoral students from Togo – Ame Houngo and Fanny Sibabi – are based in the Department of Sustainable Food Systems and Development and will be supervised by Dr Alba du Toit and Prof Maryke Labuschagne,” says Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at the UFS, who serves as the coordinator of the MAINSTREAM project. Master’s student Prudence Bilabina, also from Togo, is hosted by the Department of Agricultural Economics under the supervision of Prof Henry Jordaan.

From Ethiopia, doctoral student Debela Bedada and master’s student Gemedo Shengu are both pursuing their research in the Department of Agricultural Economics, supervised by Prof Nicky Matthews and Dr Janus Henning respectively.

A Ugandan student will soon join them on 22 April for a three-month traineeship. “He is an undergraduate Agriculture student who will register for a service-learning module at the UFS and spend the three months working on a farm,” explains Prof Witthuhn. The student hails from the Mountains of the Moon University in Uganda.

By June 2025, the university anticipates the arrival of four more students from Uganda – three at master’s level and one traineeship participant – bringing the total number of MAINSTREAM students hosted by UFS this year to ten.

 

Building a climate-resilient future through agricultural education

The MAINSTREAM project aims to foster education and skills improvement in agricultural knowledge systems, with a strong focus on climate change resilience. According to Prof Witthuhn, the project “strives to influence the common agenda for addressing education and skills improvement … targeting transformations with the tertiary agricultural education community, policy, and industry actors”.

An important aspect of the initiative is its emphasis on inclusion, particularly regarding African women who remain underrepresented in higher education agricultural programmes. “Mobility schemes will also be used to break cross-African gendered perceptions of agriculture … and to further provide for a gender-sensitive learning environment and institutional culture,” Prof Witthuhn notes.

The UFS’ participation forms part of a larger network of partner institutions across Africa and Europe, including Arsi University (Ethiopia), the University of Kara (Togo), the Mountains of the Moon University (Uganda), Jaramogi Oginga Odinga University of Science and Technology (JOOUST, Kenya), the University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN, Senegal), and the Weihenstephan-Triesdorf University of Applied Science (Germany).

 

Strengthening research, networks, and collaboration at the UFS

This four-year project, running from 2024 to 2027, will host two cohorts of students. “We are a partner in the project that will run over four years … one of the UFS master’s students, Rinus Behrens from the Department of Sustainable Food Systems and Development, is currently spending four months at JOOUST in Kenya as part of the programme,” adds Prof Witthuhn.

The presence of these students at the UFS marks a pivotal moment for both the institution and its international counterparts. “For the institution, it creates the opportunity for new networks, new research opportunities, internationalisation of our research endeavour, and increased research outputs,” she says.

During their stay, master’s and doctoral students will engage in academic research aligned with their fields of study, while traineeship students will gain hands-on agricultural experience on farms in the Bloemfontein area.

Bedada says the programme is already making a meaningful impact on his academic journey. “I am analysing the impact of agricultural mechanisation on food security and production. It is a big opportunity, because it gives me a chance to expand my knowledge and skills, and to develop my research work to international level.”

Similarly, Houngo says the experience so far has been enriching. “I have already learned a lot, and I hope to replicate the experience in my hometown,” he shares.

Behind the scenes, UFS staff and departments are instrumental in ensuring the programme’s success. “They provide host departments, academic leadership, and supervision to the six students,” says Prof Witthuhn, emphasising the collaborative effort required to support this international initiative.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept