Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2025 | Story Martinette Brits | Photo Barend Nagel
Mainstream Final Project
Five postgraduate students from Ethiopia and Togo with Prof Corli Witthuhn, coordinator of the MAINSTREAM project, during their academic exchange visit to the University of the Free State. From the left: Prudence Bilabina, Ame Houngo, Prof Corli Witthuhn, Gemedo Shengu, Fanny Sibabi, and Debela Bedada.

The University of the Free State (UFS) has welcomed a cohort of international students as part of the Mobility 4 Agricultural International Networks Supporting Thematic Resilience and Enhancing Adaptation and Mitigation (MAINSTREAM) project, a significant European Union-funded initiative aimed at boosting agricultural education and research across the African continent.

A group of postgraduate students from Togo and Ethiopia have recently joined the University of the Free State as part of the MAINSTREAM project. “Two doctoral students from Togo – Ame Houngo and Fanny Sibabi – are based in the Department of Sustainable Food Systems and Development and will be supervised by Dr Alba du Toit and Prof Maryke Labuschagne,” says Prof Corli Witthuhn from the Department of Sustainable Food Systems and Development at the UFS, who serves as the coordinator of the MAINSTREAM project. Master’s student Prudence Bilabina, also from Togo, is hosted by the Department of Agricultural Economics under the supervision of Prof Henry Jordaan.

From Ethiopia, doctoral student Debela Bedada and master’s student Gemedo Shengu are both pursuing their research in the Department of Agricultural Economics, supervised by Prof Nicky Matthews and Dr Janus Henning respectively.

A Ugandan student will soon join them on 22 April for a three-month traineeship. “He is an undergraduate Agriculture student who will register for a service-learning module at the UFS and spend the three months working on a farm,” explains Prof Witthuhn. The student hails from the Mountains of the Moon University in Uganda.

By June 2025, the university anticipates the arrival of four more students from Uganda – three at master’s level and one traineeship participant – bringing the total number of MAINSTREAM students hosted by UFS this year to ten.

 

Building a climate-resilient future through agricultural education

The MAINSTREAM project aims to foster education and skills improvement in agricultural knowledge systems, with a strong focus on climate change resilience. According to Prof Witthuhn, the project “strives to influence the common agenda for addressing education and skills improvement … targeting transformations with the tertiary agricultural education community, policy, and industry actors”.

An important aspect of the initiative is its emphasis on inclusion, particularly regarding African women who remain underrepresented in higher education agricultural programmes. “Mobility schemes will also be used to break cross-African gendered perceptions of agriculture … and to further provide for a gender-sensitive learning environment and institutional culture,” Prof Witthuhn notes.

The UFS’ participation forms part of a larger network of partner institutions across Africa and Europe, including Arsi University (Ethiopia), the University of Kara (Togo), the Mountains of the Moon University (Uganda), Jaramogi Oginga Odinga University of Science and Technology (JOOUST, Kenya), the University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN, Senegal), and the Weihenstephan-Triesdorf University of Applied Science (Germany).

 

Strengthening research, networks, and collaboration at the UFS

This four-year project, running from 2024 to 2027, will host two cohorts of students. “We are a partner in the project that will run over four years … one of the UFS master’s students, Rinus Behrens from the Department of Sustainable Food Systems and Development, is currently spending four months at JOOUST in Kenya as part of the programme,” adds Prof Witthuhn.

The presence of these students at the UFS marks a pivotal moment for both the institution and its international counterparts. “For the institution, it creates the opportunity for new networks, new research opportunities, internationalisation of our research endeavour, and increased research outputs,” she says.

During their stay, master’s and doctoral students will engage in academic research aligned with their fields of study, while traineeship students will gain hands-on agricultural experience on farms in the Bloemfontein area.

Bedada says the programme is already making a meaningful impact on his academic journey. “I am analysing the impact of agricultural mechanisation on food security and production. It is a big opportunity, because it gives me a chance to expand my knowledge and skills, and to develop my research work to international level.”

Similarly, Houngo says the experience so far has been enriching. “I have already learned a lot, and I hope to replicate the experience in my hometown,” he shares.

Behind the scenes, UFS staff and departments are instrumental in ensuring the programme’s success. “They provide host departments, academic leadership, and supervision to the six students,” says Prof Witthuhn, emphasising the collaborative effort required to support this international initiative.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept