Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2025 | Story Lilitha Dingwayo | Photo Supplied
Mobi Readathon
Attending the MobiReadathon (left to right): Rasesemola Elias, Principal Librarian, Fezile Dabi District; Mzwandile Radebe, Principal Librarian, Thabo Mofutsanyana District Municipality; Jeannet Molopyane, Director, UFS Library and Information Services; Nomabhaso Ramugondo, Director, Free State Provincial Library Services; Elmari Kruger, Deputy Director, Motheo District Municipality; Larshan Naicker, Deputy Director, UFS Library and Information Services; Adele Bezuidenhout, Deputy Director, Fezile Dabi District Municipality; Henna Adendorff, Assistant Manager, Free State Provincial Library Services; and Thandi Gxabu, Librarian, Free State Provincial Library Services.

The University of the Free State (UFS) Department of Library and Information Services recently hosted the 2025 MobiReadathon competition, a digital reading initiative established by the City of Johannesburg Library Services. Now a national programme involving all nine provinces, the competition was introduced to Grade 8 high school learners in the Free State for the first time, with UFS playing a central role in supporting digital literacy and community empowerment.

Held at the UFS Sasol Library on 25 July 2025, the Free State leg of the 2025 MobiReadathon brought together 50 Grade 8 learners from across the province. The room buzzed with excitement as the young readers engaged in digital reading tasks and trivia challenges via mobile devices.

“I never liked reading, and because I am not fluent in English I thought I should start reading, and this initiative has been helpful for me,” said Bohlokwa Dikoetsing, a learner at Bodibeng Secondary School.

Tshepo Kgaola, also a participant, said the most exciting part of the competition was when his team won a voucher for reading after they created a story using artificial intelligence (AI).

“This initiative is part of our digital transformation agenda for public libraries,” said Nomabhaso (Rasby) Ramugondo, Director of the Free State Provincial Library Services. Ramugondo emphasised the issue of reading with understanding in South Africa, a priority that she hopes to see eradicated through programmes like the MobiReadathon. “We had asked Jeff Nyoka from the City of Johannesburg Library Services to come and do a presentation about digital literacy,” she explained. “It was then that a team of digital transformers was established to come up with initiatives like the Reja Buka Reading Festival that will help learners – and that is how the collaboration on the MobiReadathon came about in Free State.” 

“The essence of this collaboration is to promote reading development,” said Tebogo Msimango, Senior Librarian for E-learning Programmes at the City of Johannesburg. Just like Ramugondo, Msimango explains the need to promote digital reading due to the issue of learners not being able to read for meaning.

“The outcome I would like for this initiative is for learners to discover themselves and come to an understanding that with reading, one could go far,” Msimango said. “These collaborations also help with making the learners realise that they could also come into the university space, and a good example is the tour that they were taken on around the library.”

UFS Library Services played a pivotal role in facilitating the event, offering logistical support. As part of its community engagement initiatives, the university continues to collaborate on programmes that uplift local youth and promote literacy through innovation.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept