Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2025 | Story Lilitha Dingwayo | Photo Supplied
Mobi Readathon
Attending the MobiReadathon (left to right): Rasesemola Elias, Principal Librarian, Fezile Dabi District; Mzwandile Radebe, Principal Librarian, Thabo Mofutsanyana District Municipality; Jeannet Molopyane, Director, UFS Library and Information Services; Nomabhaso Ramugondo, Director, Free State Provincial Library Services; Elmari Kruger, Deputy Director, Motheo District Municipality; Larshan Naicker, Deputy Director, UFS Library and Information Services; Adele Bezuidenhout, Deputy Director, Fezile Dabi District Municipality; Henna Adendorff, Assistant Manager, Free State Provincial Library Services; and Thandi Gxabu, Librarian, Free State Provincial Library Services.

The University of the Free State (UFS) Department of Library and Information Services recently hosted the 2025 MobiReadathon competition, a digital reading initiative established by the City of Johannesburg Library Services. Now a national programme involving all nine provinces, the competition was introduced to Grade 8 high school learners in the Free State for the first time, with UFS playing a central role in supporting digital literacy and community empowerment.

Held at the UFS Sasol Library on 25 July 2025, the Free State leg of the 2025 MobiReadathon brought together 50 Grade 8 learners from across the province. The room buzzed with excitement as the young readers engaged in digital reading tasks and trivia challenges via mobile devices.

“I never liked reading, and because I am not fluent in English I thought I should start reading, and this initiative has been helpful for me,” said Bohlokwa Dikoetsing, a learner at Bodibeng Secondary School.

Tshepo Kgaola, also a participant, said the most exciting part of the competition was when his team won a voucher for reading after they created a story using artificial intelligence (AI).

“This initiative is part of our digital transformation agenda for public libraries,” said Nomabhaso (Rasby) Ramugondo, Director of the Free State Provincial Library Services. Ramugondo emphasised the issue of reading with understanding in South Africa, a priority that she hopes to see eradicated through programmes like the MobiReadathon. “We had asked Jeff Nyoka from the City of Johannesburg Library Services to come and do a presentation about digital literacy,” she explained. “It was then that a team of digital transformers was established to come up with initiatives like the Reja Buka Reading Festival that will help learners – and that is how the collaboration on the MobiReadathon came about in Free State.” 

“The essence of this collaboration is to promote reading development,” said Tebogo Msimango, Senior Librarian for E-learning Programmes at the City of Johannesburg. Just like Ramugondo, Msimango explains the need to promote digital reading due to the issue of learners not being able to read for meaning.

“The outcome I would like for this initiative is for learners to discover themselves and come to an understanding that with reading, one could go far,” Msimango said. “These collaborations also help with making the learners realise that they could also come into the university space, and a good example is the tour that they were taken on around the library.”

UFS Library Services played a pivotal role in facilitating the event, offering logistical support. As part of its community engagement initiatives, the university continues to collaborate on programmes that uplift local youth and promote literacy through innovation.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept