Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Yonas Bahta
Prof Yonas Bahta, Professor in the Department of Agricultural Economics at the University of the Free State, delivered his inaugural lecture on the future of agricultural trade and food security, titled Can We Own the Future? The Ever-Changing Dynamics of Agricultural Trade and Food Security Amid Intensifying Agricultural Drought.

With the world hurtling towards a population of 9,7 billion by 2050 – and Africa set to make up more than a quarter of that – the question of whether we can ‘own the future’ has never been more urgent. In his inaugural lecture at the University of the Free State (UFS), Prof Yonas Bahta from the Department of Agricultural Economics warned that climate change, trade tensions, and deepening food insecurity are converging to create unprecedented risks for farmers, economies, and communities.

“We find ourselves at a pivotal moment in human history, characterised by the intersection of climate change, particularly agricultural drought, resource scarcity, geopolitical instability, and the current trade reciprocal tariff, all of which pose significant threats to the foundational structures of global food systems,” he said.

 

From vulnerability to agency

Prof Bahta highlighted the stark reality that the world population is projected to reach 9,7 billion by 2050, with Africa constituting 2,5 billion. “Despite this growth, the agricultural sector predominantly operates at a subsistence level, with diminishing resources available to farming communities, especially smallholder farmers who rely on agriculture as their primary source of employment and sustenance.”

In South Africa, climate change – particularly agricultural drought – is affecting both commercial and smallholder farmers, with cascading effects on food security, employment, and livelihoods. Coupled with disease outbreaks, these factors lead to reduced crop yields, supply shocks, and trade imbalances that ripple through the economy.

Food insecurity remains a critical concern, with approximately 15 million South African households experiencing moderate to severe food insecurity – a figure even higher (25,5%) among households engaged in agricultural activities. Prof Bahta emphasised that these challenges are compounded by “institutional barriers such as the current trade reciprocal tariff by the USA, limited access to credit, crop and livestock insurance, inadequate road infrastructure, and electricity shortages”.

Despite these challenges, Prof Bahta sees clear opportunities. He pointed to Africa, including South Africa’s extensive arable land; research and innovation have highlighted the benefits of integrating traditional techniques with modern approaches such as climate-smart agriculture and its membership of BRICS and other trading partners as levers for resilience and growth. “Securing the future is not about mere assertion but about the stewardship of markets, data, and people,” he said. By aligning trade policy, drought preparedness, and social protection within robust institutions, “the country can transition from vulnerability to agency, from passively observing the future to actively shaping it. In doing so, we may indeed assert with integrity that ‘We own the future’.”

 

About Prof Yonas Bahta

Prof Yonas Bahta is a Professor and NRF-rated researcher in the Department of Agricultural Economics at the University of the Free State. He joined the UFS as a researcher in 2014 and has supervised more than 42 postgraduate students (both MSc and PhD), of whom 29 have completed their studies (10 PhD and 19 MSc).

He holds a PhD (2007) and MSc (2004, with distinction) in Agricultural Economics from the UFS, and a BSc (1994) in Agricultural Economics from Haramaya University, Ethiopia. Prof Bahta serves on the editorial boards of several journals, acts as a reviewer and guest editor, and is a member of several national and international professional bodies.

His work has been recognised with an award from the African Growth and Development Policy Modelling Consortium (AGRODEP), and in 2024 he was rated among the top 2% of researchers globally by Elsevier.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept