Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Yonas Bahta
Prof Yonas Bahta, Professor in the Department of Agricultural Economics at the University of the Free State, delivered his inaugural lecture on the future of agricultural trade and food security, titled Can We Own the Future? The Ever-Changing Dynamics of Agricultural Trade and Food Security Amid Intensifying Agricultural Drought.

With the world hurtling towards a population of 9,7 billion by 2050 – and Africa set to make up more than a quarter of that – the question of whether we can ‘own the future’ has never been more urgent. In his inaugural lecture at the University of the Free State (UFS), Prof Yonas Bahta from the Department of Agricultural Economics warned that climate change, trade tensions, and deepening food insecurity are converging to create unprecedented risks for farmers, economies, and communities.

“We find ourselves at a pivotal moment in human history, characterised by the intersection of climate change, particularly agricultural drought, resource scarcity, geopolitical instability, and the current trade reciprocal tariff, all of which pose significant threats to the foundational structures of global food systems,” he said.

 

From vulnerability to agency

Prof Bahta highlighted the stark reality that the world population is projected to reach 9,7 billion by 2050, with Africa constituting 2,5 billion. “Despite this growth, the agricultural sector predominantly operates at a subsistence level, with diminishing resources available to farming communities, especially smallholder farmers who rely on agriculture as their primary source of employment and sustenance.”

In South Africa, climate change – particularly agricultural drought – is affecting both commercial and smallholder farmers, with cascading effects on food security, employment, and livelihoods. Coupled with disease outbreaks, these factors lead to reduced crop yields, supply shocks, and trade imbalances that ripple through the economy.

Food insecurity remains a critical concern, with approximately 15 million South African households experiencing moderate to severe food insecurity – a figure even higher (25,5%) among households engaged in agricultural activities. Prof Bahta emphasised that these challenges are compounded by “institutional barriers such as the current trade reciprocal tariff by the USA, limited access to credit, crop and livestock insurance, inadequate road infrastructure, and electricity shortages”.

Despite these challenges, Prof Bahta sees clear opportunities. He pointed to Africa, including South Africa’s extensive arable land; research and innovation have highlighted the benefits of integrating traditional techniques with modern approaches such as climate-smart agriculture and its membership of BRICS and other trading partners as levers for resilience and growth. “Securing the future is not about mere assertion but about the stewardship of markets, data, and people,” he said. By aligning trade policy, drought preparedness, and social protection within robust institutions, “the country can transition from vulnerability to agency, from passively observing the future to actively shaping it. In doing so, we may indeed assert with integrity that ‘We own the future’.”

 

About Prof Yonas Bahta

Prof Yonas Bahta is a Professor and NRF-rated researcher in the Department of Agricultural Economics at the University of the Free State. He joined the UFS as a researcher in 2014 and has supervised more than 42 postgraduate students (both MSc and PhD), of whom 29 have completed their studies (10 PhD and 19 MSc).

He holds a PhD (2007) and MSc (2004, with distinction) in Agricultural Economics from the UFS, and a BSc (1994) in Agricultural Economics from Haramaya University, Ethiopia. Prof Bahta serves on the editorial boards of several journals, acts as a reviewer and guest editor, and is a member of several national and international professional bodies.

His work has been recognised with an award from the African Growth and Development Policy Modelling Consortium (AGRODEP), and in 2024 he was rated among the top 2% of researchers globally by Elsevier.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept