Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Yonas Bahta
Prof Yonas Bahta, Professor in the Department of Agricultural Economics at the University of the Free State, delivered his inaugural lecture on the future of agricultural trade and food security, titled Can We Own the Future? The Ever-Changing Dynamics of Agricultural Trade and Food Security Amid Intensifying Agricultural Drought.

With the world hurtling towards a population of 9,7 billion by 2050 – and Africa set to make up more than a quarter of that – the question of whether we can ‘own the future’ has never been more urgent. In his inaugural lecture at the University of the Free State (UFS), Prof Yonas Bahta from the Department of Agricultural Economics warned that climate change, trade tensions, and deepening food insecurity are converging to create unprecedented risks for farmers, economies, and communities.

“We find ourselves at a pivotal moment in human history, characterised by the intersection of climate change, particularly agricultural drought, resource scarcity, geopolitical instability, and the current trade reciprocal tariff, all of which pose significant threats to the foundational structures of global food systems,” he said.

 

From vulnerability to agency

Prof Bahta highlighted the stark reality that the world population is projected to reach 9,7 billion by 2050, with Africa constituting 2,5 billion. “Despite this growth, the agricultural sector predominantly operates at a subsistence level, with diminishing resources available to farming communities, especially smallholder farmers who rely on agriculture as their primary source of employment and sustenance.”

In South Africa, climate change – particularly agricultural drought – is affecting both commercial and smallholder farmers, with cascading effects on food security, employment, and livelihoods. Coupled with disease outbreaks, these factors lead to reduced crop yields, supply shocks, and trade imbalances that ripple through the economy.

Food insecurity remains a critical concern, with approximately 15 million South African households experiencing moderate to severe food insecurity – a figure even higher (25,5%) among households engaged in agricultural activities. Prof Bahta emphasised that these challenges are compounded by “institutional barriers such as the current trade reciprocal tariff by the USA, limited access to credit, crop and livestock insurance, inadequate road infrastructure, and electricity shortages”.

Despite these challenges, Prof Bahta sees clear opportunities. He pointed to Africa, including South Africa’s extensive arable land; research and innovation have highlighted the benefits of integrating traditional techniques with modern approaches such as climate-smart agriculture and its membership of BRICS and other trading partners as levers for resilience and growth. “Securing the future is not about mere assertion but about the stewardship of markets, data, and people,” he said. By aligning trade policy, drought preparedness, and social protection within robust institutions, “the country can transition from vulnerability to agency, from passively observing the future to actively shaping it. In doing so, we may indeed assert with integrity that ‘We own the future’.”

 

About Prof Yonas Bahta

Prof Yonas Bahta is a Professor and NRF-rated researcher in the Department of Agricultural Economics at the University of the Free State. He joined the UFS as a researcher in 2014 and has supervised more than 42 postgraduate students (both MSc and PhD), of whom 29 have completed their studies (10 PhD and 19 MSc).

He holds a PhD (2007) and MSc (2004, with distinction) in Agricultural Economics from the UFS, and a BSc (1994) in Agricultural Economics from Haramaya University, Ethiopia. Prof Bahta serves on the editorial boards of several journals, acts as a reviewer and guest editor, and is a member of several national and international professional bodies.

His work has been recognised with an award from the African Growth and Development Policy Modelling Consortium (AGRODEP), and in 2024 he was rated among the top 2% of researchers globally by Elsevier.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept