Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2025 | Story Martinette Brits | Photo Martinette Brits
From the left: Elisa Mosala (Dairy Assistant), Dr Analie Hattingh (Lecturer and Production Manager), Eline van der Velde (cheesemaking expert from the Netherlands), and Martha Kantoane (Dairy Assistant) on the UFS Experimental Farm.

Cheesemaking expertise from the Netherlands has given University of the Free State (UFS) students a unique taste of hands-on learning. From 10 to 22 August 2025, Eline van der Velde, a cheesemaking specialist and lecturer in food technology, spent two weeks at the UFS Paradys Experimental Farm teaching students, guiding dairy assistants, and working with staff to strengthen the university’s Dairy Processing Unit.

Supported by PUM – a Dutch volunteer organisation that connects international experts with local projects – her visit combined technical training with practical exposure, showing students the full process of transforming fresh milk into a range of cheeses.

 

Hands-on cheesemaking at the UFS

In interactive sessions, Van der Velde introduced students in the BSc Food Systems programme to the art and science of cheesemaking. They learned how to prepare paneer, halloumi, feta, mozzarella, and cottage cheese, while experimenting with flavoured varieties such as garlic-and-oregano and chilli cheese.

“I gave demonstrations on different types of coagulation and let the students try it out themselves. They asked great questions and enjoyed it so much that they wanted to come again for more practicals,” she said.

For many students, the opportunity was a first step into the practical realities behind food science. “It’s as if a whole world has opened up for our students,” said Dr Analie Hattingh, Lecturer and Production Manager at the Paradys Experimental Farm. “They don’t just hear about pH in theory – they can relate it to what they’ve seen and experienced here. That’s what prepares them for the workplace.”

“Due to food safety regulations all over the world, it is becoming increasingly difficult to take food science or food sustainability students into commercial factories. They don’t allow students or visitors anymore. At least with this facility here, our students can experience a real production environment and see how the industry works,” Dr Hattingh said. 

 

From farm girl to food technologist

Van der Velde’s passion for cheesemaking began on her uncle’s farm in the Netherlands, where she helped with milking and turning cheeses in storage. “Even though I grew up in the city, I think I’m more of a farm girl at heart,” she recalled.

Today, she teaches at an agricultural school and trains adults entering the food industry, while volunteering internationally through PUM. “I like to share knowledge – it’s not for me alone. That’s why I volunteer, to support projects across the world,” she explained.

 

Sustainability at the heart of the farm

The cheesemaking unit also forms part of the experimental farm’s commitment to sustainability. The cheeses are made from milk produced by Jersey cows on the farm, with careful attention to hygiene and quality. Byproducts are reused – whey is processed into ricotta, and the remainder is spread as fertiliser in the fields. “Nothing goes to waste,” Van der Velde noted.

Hattingh added that this integrated approach ensures that the farm serves as both an academic training ground and a model for sustainable food production. “We want to be self-sustaining and academically valuable, without competing with industry – to serve both the university and its students,” she said.

 

A shared learning journey

For dairy assistants Elisa Mosala and Martha Kantoane, working alongside Van der Velde and the students was equally rewarding. “It was nice, especially learning how to do different kinds of cheese,” said Kantoane.

Mosala agreed: “It was nice working with students and experiencing more every day. I learned new skills and got out of my comfort zone.”

Looking to the future, Van der Velde emphasised the value of involving students in the entire process – from milking to packaging and selling – so that they graduate with both knowledge and practical skills. She also believes in the potential of more international exchange: “These projects benefit both sides. Knowledge exchange in agriculture and food science is essential for building sustainable solutions worldwide.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept