Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2025 | Story Martinette Brits | Photo Martinette Brits
From the left: Elisa Mosala (Dairy Assistant), Dr Analie Hattingh (Lecturer and Production Manager), Eline van der Velde (cheesemaking expert from the Netherlands), and Martha Kantoane (Dairy Assistant) on the UFS Experimental Farm.

Cheesemaking expertise from the Netherlands has given University of the Free State (UFS) students a unique taste of hands-on learning. From 10 to 22 August 2025, Eline van der Velde, a cheesemaking specialist and lecturer in food technology, spent two weeks at the UFS Paradys Experimental Farm teaching students, guiding dairy assistants, and working with staff to strengthen the university’s Dairy Processing Unit.

Supported by PUM – a Dutch volunteer organisation that connects international experts with local projects – her visit combined technical training with practical exposure, showing students the full process of transforming fresh milk into a range of cheeses.

 

Hands-on cheesemaking at the UFS

In interactive sessions, Van der Velde introduced students in the BSc Food Systems programme to the art and science of cheesemaking. They learned how to prepare paneer, halloumi, feta, mozzarella, and cottage cheese, while experimenting with flavoured varieties such as garlic-and-oregano and chilli cheese.

“I gave demonstrations on different types of coagulation and let the students try it out themselves. They asked great questions and enjoyed it so much that they wanted to come again for more practicals,” she said.

For many students, the opportunity was a first step into the practical realities behind food science. “It’s as if a whole world has opened up for our students,” said Dr Analie Hattingh, Lecturer and Production Manager at the Paradys Experimental Farm. “They don’t just hear about pH in theory – they can relate it to what they’ve seen and experienced here. That’s what prepares them for the workplace.”

“Due to food safety regulations all over the world, it is becoming increasingly difficult to take food science or food sustainability students into commercial factories. They don’t allow students or visitors anymore. At least with this facility here, our students can experience a real production environment and see how the industry works,” Dr Hattingh said. 

 

From farm girl to food technologist

Van der Velde’s passion for cheesemaking began on her uncle’s farm in the Netherlands, where she helped with milking and turning cheeses in storage. “Even though I grew up in the city, I think I’m more of a farm girl at heart,” she recalled.

Today, she teaches at an agricultural school and trains adults entering the food industry, while volunteering internationally through PUM. “I like to share knowledge – it’s not for me alone. That’s why I volunteer, to support projects across the world,” she explained.

 

Sustainability at the heart of the farm

The cheesemaking unit also forms part of the experimental farm’s commitment to sustainability. The cheeses are made from milk produced by Jersey cows on the farm, with careful attention to hygiene and quality. Byproducts are reused – whey is processed into ricotta, and the remainder is spread as fertiliser in the fields. “Nothing goes to waste,” Van der Velde noted.

Hattingh added that this integrated approach ensures that the farm serves as both an academic training ground and a model for sustainable food production. “We want to be self-sustaining and academically valuable, without competing with industry – to serve both the university and its students,” she said.

 

A shared learning journey

For dairy assistants Elisa Mosala and Martha Kantoane, working alongside Van der Velde and the students was equally rewarding. “It was nice, especially learning how to do different kinds of cheese,” said Kantoane.

Mosala agreed: “It was nice working with students and experiencing more every day. I learned new skills and got out of my comfort zone.”

Looking to the future, Van der Velde emphasised the value of involving students in the entire process – from milking to packaging and selling – so that they graduate with both knowledge and practical skills. She also believes in the potential of more international exchange: “These projects benefit both sides. Knowledge exchange in agriculture and food science is essential for building sustainable solutions worldwide.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept