Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 August 2025 | Story Igno van Niekerk | Photo Stephen Collett
One-Room Space
The UFS’ one-room spaces are designed to connect students and lecturers seamlessly across locations and borders.

The university is transforming education across its Bloemfontein, Qwaqwa, and South campuses with its pioneering one-room spaces, mirrored across all three locations to deliver cutting-edge, immersive learning. Research for these innovative spaces began in 2023, sparked by a photo from the University of Leuven in Belgium, which the university identified as showcasing Leuven’s advanced classroom setup. Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences, leveraging a connection there, led a team to explore this technology globally, collaborating with Canada’s X2O OneRoom to make the UFS the first in South Africa – and one of (as far as we know) two in Africa, alongside Kenya – to offer such immersive classrooms.

Unlike Zoom or Blackboard, where online students were often overlooked as small icons, one-room spaces ensure that everyone feels included. Designed for postgraduate training and PhD interactions, these rooms accommodate up to 40 in-person and 40 online participants, with large video camera feeds on screens, reminiscent of the TV programme Small Talk, where children’s faces lined the wall for engagement. Directional audio and personal cameras create a sensory experience, with sound coming from the speaker’s direction and eye contact feeling natural. Angelique Carson-Porter from the Department of Nutrition and Dietetics shared her excitement about a postgraduate session led by Prof Aletta Olivier, Lecturer in the Centre for Gender and Africa Studies: “It feels like you’re right there, even from Pretoria or Ghana. You see everyone, interact, and never miss a beat.”

Gavin Coetzer at ICT Services, a key project leader, highlighted how lecturers struggled with older platforms’ limitations, often only addressing online questions at the end, disrupting the flow. The UFS’ one-room spaces, implemented in the UFS Business School, the Clinical Skills Unit, South Campus teacher training, and Qwaqwa, solve this with breakout sessions and global conference support. While other universities rely on Teams, the UFS’ user-friendly tech, with around 24 screens and ceiling microphones, allows lecturers to focus on teaching.

Staying ahead of tech trends is challenging, but the university is excelling, making education inclusive, engaging, and truly global.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept