Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 August 2025 | Story Igno van Niekerk | Photo Stephen Collett
One-Room Space
The UFS’ one-room spaces are designed to connect students and lecturers seamlessly across locations and borders.

The university is transforming education across its Bloemfontein, Qwaqwa, and South campuses with its pioneering one-room spaces, mirrored across all three locations to deliver cutting-edge, immersive learning. Research for these innovative spaces began in 2023, sparked by a photo from the University of Leuven in Belgium, which the university identified as showcasing Leuven’s advanced classroom setup. Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences, leveraging a connection there, led a team to explore this technology globally, collaborating with Canada’s X2O OneRoom to make the UFS the first in South Africa – and one of (as far as we know) two in Africa, alongside Kenya – to offer such immersive classrooms.

Unlike Zoom or Blackboard, where online students were often overlooked as small icons, one-room spaces ensure that everyone feels included. Designed for postgraduate training and PhD interactions, these rooms accommodate up to 40 in-person and 40 online participants, with large video camera feeds on screens, reminiscent of the TV programme Small Talk, where children’s faces lined the wall for engagement. Directional audio and personal cameras create a sensory experience, with sound coming from the speaker’s direction and eye contact feeling natural. Angelique Carson-Porter from the Department of Nutrition and Dietetics shared her excitement about a postgraduate session led by Prof Aletta Olivier, Lecturer in the Centre for Gender and Africa Studies: “It feels like you’re right there, even from Pretoria or Ghana. You see everyone, interact, and never miss a beat.”

Gavin Coetzer at ICT Services, a key project leader, highlighted how lecturers struggled with older platforms’ limitations, often only addressing online questions at the end, disrupting the flow. The UFS’ one-room spaces, implemented in the UFS Business School, the Clinical Skills Unit, South Campus teacher training, and Qwaqwa, solve this with breakout sessions and global conference support. While other universities rely on Teams, the UFS’ user-friendly tech, with around 24 screens and ceiling microphones, allows lecturers to focus on teaching.

Staying ahead of tech trends is challenging, but the university is excelling, making education inclusive, engaging, and truly global.

News Archive

Scientists discover a water reservoir beneath the Free State
2009-12-09

Dr Holger Sommer

The Mantle Research Group Bloemfontein (MRGB), under the leadership of Dr Holger Sommer, a senior lecturer in the Department of Geology at the University of the Free State (UFS), has discovered an enormous water reservoir 160 km beneath the Free State.

This discovery, according to Dr Sommer, is the first of its kind in South Africa after he had previously made a similar finding in Colorado, USA.

However, this water cannot be used for human consumption. “It is not frozen water; it is not molecular water; it is not fresh water; it is not salty water; it is OH – water which is sitting in the crystal lattice,” he said.

He said the reservoir was comparable in size to Lake Victoria in Tanzania.
The researchers collected eclogites from the Roberts Victor (Rovic) Mine close to the town of Boshof, south-west of the Free State, for their study.

“The Rovic eclogites are rocks which represent former oceanic crust transported into the earth’s interior by complex plate tectonic processes about 2.0 billion years ago,” explained Dr Sommer.

“These rocks were finally carried back to the earth’s surface by volcanic (kimberlite) eruptions around 130 million years ago. Eclogitic rocks are therefore a window into the Earth’s interior.”

The question from the beginning for all MRGB scientists was: Is there water inside these rocks in such depth, and if so, where is it located?

To answer this question, Dr Sommer and his research fellows separated single mineral grains from eclogite samples and prepared about 100 micrometer (0,1 mm) thick rock sections. Afterwards, specific particle accelerator (Synchrotron) measurements were carried out in the city of Karlsruhe in Germany.

“And indeed, the MRGB found water inside the studied rocks from the Roberts Victor Mine,” he said. “The water was located in defect structures in crystal lattices and along boundaries between single mineral grains.”

“The occurrence of water at such depth would give first evidence that all water of the oceans could be stored five to ten times in the earth’s mantle.”
The study was conducted about a year ago.
 

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za
4 December 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept