Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 August 2025 | Story Igno van Niekerk | Photo Stephen Collett
One-Room Space
The UFS’ one-room spaces are designed to connect students and lecturers seamlessly across locations and borders.

The university is transforming education across its Bloemfontein, Qwaqwa, and South campuses with its pioneering one-room spaces, mirrored across all three locations to deliver cutting-edge, immersive learning. Research for these innovative spaces began in 2023, sparked by a photo from the University of Leuven in Belgium, which the university identified as showcasing Leuven’s advanced classroom setup. Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences, leveraging a connection there, led a team to explore this technology globally, collaborating with Canada’s X2O OneRoom to make the UFS the first in South Africa – and one of (as far as we know) two in Africa, alongside Kenya – to offer such immersive classrooms.

Unlike Zoom or Blackboard, where online students were often overlooked as small icons, one-room spaces ensure that everyone feels included. Designed for postgraduate training and PhD interactions, these rooms accommodate up to 40 in-person and 40 online participants, with large video camera feeds on screens, reminiscent of the TV programme Small Talk, where children’s faces lined the wall for engagement. Directional audio and personal cameras create a sensory experience, with sound coming from the speaker’s direction and eye contact feeling natural. Angelique Carson-Porter from the Department of Nutrition and Dietetics shared her excitement about a postgraduate session led by Prof Aletta Olivier, Lecturer in the Centre for Gender and Africa Studies: “It feels like you’re right there, even from Pretoria or Ghana. You see everyone, interact, and never miss a beat.”

Gavin Coetzer at ICT Services, a key project leader, highlighted how lecturers struggled with older platforms’ limitations, often only addressing online questions at the end, disrupting the flow. The UFS’ one-room spaces, implemented in the UFS Business School, the Clinical Skills Unit, South Campus teacher training, and Qwaqwa, solve this with breakout sessions and global conference support. While other universities rely on Teams, the UFS’ user-friendly tech, with around 24 screens and ceiling microphones, allows lecturers to focus on teaching.

Staying ahead of tech trends is challenging, but the university is excelling, making education inclusive, engaging, and truly global.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept