Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Reuben Maeko | Photo Reuben Maeko
Prof Gert van Zyl
From left: Prof Lizemari Hugo, Senior Lecturer at the School of Nursing, Prof Gert van Zyl, the Dean of the Faculty of Health Sciences, Dr Arnelle Mostert, Senior Lecturer in the Department of Biomedical Sciences, and Dr Elzana Kempen, Senior Lecturer in the Division of Health Sciences Education.

The Southern African Association of Health Educationalists (SAAHE) recently bestowed the Council Medal Award – its highest accolade – on Prof Gert van Zyl, Dean of the Faculty of Health Sciences at the University of the Free State (UFS) in recognition of his extraordinary and sustained contributions to Health Professions Education (HPE) in Southern Africa.

The SAAHE Council Medal is awarded to individuals who have demonstrated long-term, impactful contributions to HPE, transforming pedagogy, advancing equity and diversity, and inspiring excellence in teaching, research, and engagement. Recipients must also demonstrate national and international recognition, as well as exemplary leadership, mentorship, and inclusiveness.

 

A transformative leader in medical education

Prof Van Zyl’s visionary leadership has been pivotal in shaping the future of medical education in South Africa. His strategic role in the development and implementation of the UFS’s five-year MBChB curriculum modernised the teaching and learning experience for medical students, aligning it with international best practice while addressing the specific needs of the South African healthcare context.

Speaking of his award, Prof Van Zyl expressed his gratitude and humility, acknowledging the collective efforts of colleagues, students, and institutional partners over the years. His recognition serves as an inspiration to the HPE community, illustrating the profound and lasting impact that dedicated leadership and innovation can have on the future of healthcare education.

Central to his transformative approach has been the integration of Interprofessional Education (IPE) and Community-Based Education (CBE). These innovative strategies ensured that medical training not only develops technical expertise but also nurtures collaborative practice and community engagement. Prof Van Zyl championed practical learning through CBE initiatives in Trompsburg and Springfontein, later expanding this model to Botshabelo, thereby fostering a strong culture of service to underserved communities.

 

A founding member and lifelong contributor to SAAHE

Prof Van Zyl’s association with SAAHE dates to its very inception in the early 2000s. As a founding member, he was actively involved in the organisation’s transition from the South African Association of Medical Educators (SAAME) to SAAHE, participating in the first meeting in Bloemfontein. His leadership and passion for HPE have been constant in the association’s growth and evolution.

His sustained commitment is evident in his 15 years of service on the SAAHE Executive Committee (2005-2020). Throughout this period he was instrumental in guiding the association’s strategic direction, ensuring that it remained a dynamic platform for advancing medical and health professions education.

Prof Van Zyl’s engagement extended well beyond committee work. He has been a consistent and influential presence at SAAHE conferences, contributing his expertise and thought-leadership at gatherings in 2006, 2007, 2012-2015, 2017-2019, and 2024. His presentations and discussions have enriched the dialogue around pedagogy, curriculum reform, and capacity building in HPE.

 

Advocate for mentorship, inclusivity, and capacity building

At the heart of Prof Van Zyl’s career is a deep commitment to mentorship and capacity development. Colleagues and students alike have benefited from his guidance, which blends academic excellence with a genuine investment in the growth and success of others. His leadership style has consistently promoted inclusivity and equity, fostering an environment in which diverse perspectives and talents can thrive in the service of excellence in HPE.

 

A deserving recognition of a lifetime’s work

The awarding of the SAAHE Council Medal to Prof Van Zyl is a fitting acknowledgment of his decades-long dedication to advancing HPE in Southern Africa. His transformative influence – spanning curriculum innovation, professional development, organisational leadership and community engagement – embodies the qualities the medal seeks to honour.

With this accolade, SAAHE not only honours Prof Van Zyl’s remarkable achievements, but also celebrates a career devoted to building a stronger, more inclusive, and forward-looking HPE landscape in Southern Africa.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept