Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Reuben Maeko | Photo Reuben Maeko
Prof Gert van Zyl
From left: Prof Lizemari Hugo, Senior Lecturer at the School of Nursing, Prof Gert van Zyl, the Dean of the Faculty of Health Sciences, Dr Arnelle Mostert, Senior Lecturer in the Department of Biomedical Sciences, and Dr Elzana Kempen, Senior Lecturer in the Division of Health Sciences Education.

The Southern African Association of Health Educationalists (SAAHE) recently bestowed the Council Medal Award – its highest accolade – on Prof Gert van Zyl, Dean of the Faculty of Health Sciences at the University of the Free State (UFS) in recognition of his extraordinary and sustained contributions to Health Professions Education (HPE) in Southern Africa.

The SAAHE Council Medal is awarded to individuals who have demonstrated long-term, impactful contributions to HPE, transforming pedagogy, advancing equity and diversity, and inspiring excellence in teaching, research, and engagement. Recipients must also demonstrate national and international recognition, as well as exemplary leadership, mentorship, and inclusiveness.

 

A transformative leader in medical education

Prof Van Zyl’s visionary leadership has been pivotal in shaping the future of medical education in South Africa. His strategic role in the development and implementation of the UFS’s five-year MBChB curriculum modernised the teaching and learning experience for medical students, aligning it with international best practice while addressing the specific needs of the South African healthcare context.

Speaking of his award, Prof Van Zyl expressed his gratitude and humility, acknowledging the collective efforts of colleagues, students, and institutional partners over the years. His recognition serves as an inspiration to the HPE community, illustrating the profound and lasting impact that dedicated leadership and innovation can have on the future of healthcare education.

Central to his transformative approach has been the integration of Interprofessional Education (IPE) and Community-Based Education (CBE). These innovative strategies ensured that medical training not only develops technical expertise but also nurtures collaborative practice and community engagement. Prof Van Zyl championed practical learning through CBE initiatives in Trompsburg and Springfontein, later expanding this model to Botshabelo, thereby fostering a strong culture of service to underserved communities.

 

A founding member and lifelong contributor to SAAHE

Prof Van Zyl’s association with SAAHE dates to its very inception in the early 2000s. As a founding member, he was actively involved in the organisation’s transition from the South African Association of Medical Educators (SAAME) to SAAHE, participating in the first meeting in Bloemfontein. His leadership and passion for HPE have been constant in the association’s growth and evolution.

His sustained commitment is evident in his 15 years of service on the SAAHE Executive Committee (2005-2020). Throughout this period he was instrumental in guiding the association’s strategic direction, ensuring that it remained a dynamic platform for advancing medical and health professions education.

Prof Van Zyl’s engagement extended well beyond committee work. He has been a consistent and influential presence at SAAHE conferences, contributing his expertise and thought-leadership at gatherings in 2006, 2007, 2012-2015, 2017-2019, and 2024. His presentations and discussions have enriched the dialogue around pedagogy, curriculum reform, and capacity building in HPE.

 

Advocate for mentorship, inclusivity, and capacity building

At the heart of Prof Van Zyl’s career is a deep commitment to mentorship and capacity development. Colleagues and students alike have benefited from his guidance, which blends academic excellence with a genuine investment in the growth and success of others. His leadership style has consistently promoted inclusivity and equity, fostering an environment in which diverse perspectives and talents can thrive in the service of excellence in HPE.

 

A deserving recognition of a lifetime’s work

The awarding of the SAAHE Council Medal to Prof Van Zyl is a fitting acknowledgment of his decades-long dedication to advancing HPE in Southern Africa. His transformative influence – spanning curriculum innovation, professional development, organisational leadership and community engagement – embodies the qualities the medal seeks to honour.

With this accolade, SAAHE not only honours Prof Van Zyl’s remarkable achievements, but also celebrates a career devoted to building a stronger, more inclusive, and forward-looking HPE landscape in Southern Africa.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept