Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Reuben Maeko | Photo Reuben Maeko
Prof Gert van Zyl
From left: Prof Lizemari Hugo, Senior Lecturer at the School of Nursing, Prof Gert van Zyl, the Dean of the Faculty of Health Sciences, Dr Arnelle Mostert, Senior Lecturer in the Department of Biomedical Sciences, and Dr Elzana Kempen, Senior Lecturer in the Division of Health Sciences Education.

The Southern African Association of Health Educationalists (SAAHE) recently bestowed the Council Medal Award – its highest accolade – on Prof Gert van Zyl, Dean of the Faculty of Health Sciences at the University of the Free State (UFS) in recognition of his extraordinary and sustained contributions to Health Professions Education (HPE) in Southern Africa.

The SAAHE Council Medal is awarded to individuals who have demonstrated long-term, impactful contributions to HPE, transforming pedagogy, advancing equity and diversity, and inspiring excellence in teaching, research, and engagement. Recipients must also demonstrate national and international recognition, as well as exemplary leadership, mentorship, and inclusiveness.

 

A transformative leader in medical education

Prof Van Zyl’s visionary leadership has been pivotal in shaping the future of medical education in South Africa. His strategic role in the development and implementation of the UFS’s five-year MBChB curriculum modernised the teaching and learning experience for medical students, aligning it with international best practice while addressing the specific needs of the South African healthcare context.

Speaking of his award, Prof Van Zyl expressed his gratitude and humility, acknowledging the collective efforts of colleagues, students, and institutional partners over the years. His recognition serves as an inspiration to the HPE community, illustrating the profound and lasting impact that dedicated leadership and innovation can have on the future of healthcare education.

Central to his transformative approach has been the integration of Interprofessional Education (IPE) and Community-Based Education (CBE). These innovative strategies ensured that medical training not only develops technical expertise but also nurtures collaborative practice and community engagement. Prof Van Zyl championed practical learning through CBE initiatives in Trompsburg and Springfontein, later expanding this model to Botshabelo, thereby fostering a strong culture of service to underserved communities.

 

A founding member and lifelong contributor to SAAHE

Prof Van Zyl’s association with SAAHE dates to its very inception in the early 2000s. As a founding member, he was actively involved in the organisation’s transition from the South African Association of Medical Educators (SAAME) to SAAHE, participating in the first meeting in Bloemfontein. His leadership and passion for HPE have been constant in the association’s growth and evolution.

His sustained commitment is evident in his 15 years of service on the SAAHE Executive Committee (2005-2020). Throughout this period he was instrumental in guiding the association’s strategic direction, ensuring that it remained a dynamic platform for advancing medical and health professions education.

Prof Van Zyl’s engagement extended well beyond committee work. He has been a consistent and influential presence at SAAHE conferences, contributing his expertise and thought-leadership at gatherings in 2006, 2007, 2012-2015, 2017-2019, and 2024. His presentations and discussions have enriched the dialogue around pedagogy, curriculum reform, and capacity building in HPE.

 

Advocate for mentorship, inclusivity, and capacity building

At the heart of Prof Van Zyl’s career is a deep commitment to mentorship and capacity development. Colleagues and students alike have benefited from his guidance, which blends academic excellence with a genuine investment in the growth and success of others. His leadership style has consistently promoted inclusivity and equity, fostering an environment in which diverse perspectives and talents can thrive in the service of excellence in HPE.

 

A deserving recognition of a lifetime’s work

The awarding of the SAAHE Council Medal to Prof Van Zyl is a fitting acknowledgment of his decades-long dedication to advancing HPE in Southern Africa. His transformative influence – spanning curriculum innovation, professional development, organisational leadership and community engagement – embodies the qualities the medal seeks to honour.

With this accolade, SAAHE not only honours Prof Van Zyl’s remarkable achievements, but also celebrates a career devoted to building a stronger, more inclusive, and forward-looking HPE landscape in Southern Africa.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept